Skip to main content
Log in

A novel Euglena gracilis chloroplast operon encoding four ATP synthase subunits and two ribosomal proteins contains 17 introns

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The structure of a Euglena gracilis chloroplast operon encoding four subunits of the chloroplast ATP synthase complex and two ribosomal proteins has been determined. These six genes contain 17 introns. This operon is transcribed as a hexacistronic primary transcript which is subsequently processed to monocistronic mRNAs. The linear order of these genes, 5′-rps2-atpI-atpH-atpF-atpA-rps18-3′, encoding ribosomal protein S2, chloroplast ATP synthase subunits CF0IV, CF0III, CF0I, CF1α and ribosomal protein S18, respectively, is similar to the equivalent operons of prokaryotes, cyanelles and land-plant chloroplasts. This operon differs from those of these other organisms in the co-transcription of rps18 and in intron content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An G, Bendiak DS, Mamelak LA, Friesen JD (1981) Nucleic Acids Res 9:4163–4172

    Google Scholar 

  • Berzsborn RJ, Klein-Hitpaß L, Otto J, Schunemann S, Oworah-Nkruma R, Meyer HE (1990) Z Naturforsch 45:772–784

    Google Scholar 

  • Christopher DA, Hallick RB (1989) Nucleic Acids Res 17:7591–7608

    Google Scholar 

  • Christopher DA, Hallick RB (1990) Plant Cell 2:659–671

    Google Scholar 

  • Christopher DA, Cushman JC, Price CA, Hallick RB (1988) Curr Genet 14:275–285

    Google Scholar 

  • Copertino DW, Hallick RB (1991) EMBO J 10:433–442

    Google Scholar 

  • Copertino DW, Christopher DA, Hallick RB (1991) Nucleic Acids Res 19:6491–6497

    Google Scholar 

  • Cozens AL, Walker JE (1987) J Mol Biol 194:359–383

    Google Scholar 

  • Curtis SE (1987) J Bacteriol 169:80–86

    Google Scholar 

  • Cushman J (1987) PhD thesis, Rutgers University

  • Cushman JC, Hallick RB, Price CA (1988 a) Curr Genet 13:159–171

    Google Scholar 

  • Cushman JC, Christopher DA, Little MC, Hallick RB, Price CA (1988 b) Curr Genet 13:173–180

    Google Scholar 

  • Dean C, van den Elzen P, Tamaki S, Dunsmuir P, Bedbrook J (1985) EMBO J 4:3055–3061

    Google Scholar 

  • Falk G, Walker JE (1985) Biochem J 229:663–668

    Google Scholar 

  • Falk G, Walker JE (1988) Biochem J 254:109–122

    Google Scholar 

  • Falk G, Hampe A, Walker JE (1985) Biochem J 228:391–407

    Google Scholar 

  • Futai M, Kanazawa H (1983) Microbiol Rev 47:285–312

    Google Scholar 

  • Gay NJ, Walker JE (1981) Nucleic Acids Res 9:3919–3926

    Google Scholar 

  • Gingrich JC, Hallick RB (1985) J Biol Chem 260:16156–16161

    Google Scholar 

  • Graf L, Roux E, Stutz E (1982) Nucleic Acids Res 10:6369–6381

    Google Scholar 

  • Gray MW (1991) Origin and evolution of plastid genomes and genes. In: Bogorad L, Vasil IK (eds) Molecular biology of plastids. Academic Press, San Diego, pp 303–330

    Google Scholar 

  • Gren EJ (1984) Biochemie 66:1–29

    Google Scholar 

  • Hallick RB, Bottomley W (1983) Plant Mol Bio Rep 1:38–43

    Google Scholar 

  • Hallick RB, Richards OC, Gray PW (1982) Isolation of intact, superhelical chloroplast DNA from Euglena gracilis. In: Edelman M, Hallick RB, Chua N-H (eds) Methods in chloroplast molecular biology. Elsevier Biomedical, New York, pp

    Google Scholar 

  • Holton TA, Graham MW (1991) Nucleic Acids Res 19:1156

    Google Scholar 

  • Hudson GS, Mason JG, Holton TA, Koller B, Cox GB, Whitfeld PR, Bottomley W (1987) J Mol Biol 196:283–298

    Google Scholar 

  • Hudson GS, Holton TA, Whitfield PR, Bottomley W (1988) J Mol Biol 200:639–654

    Google Scholar 

  • Karabin GD, Narita JO, Dodd JR, Hallick RB (1983) J Biol Chem 258:14790–14796

    Google Scholar 

  • Karabin GD, Farley M, Hallick RB (1984) Nucleic Acids Res 12:5801–5812

    Google Scholar 

  • Kelle M, Weil JK, Nair CKK (1989) Plant Mol Bio 13:723–725

    Google Scholar 

  • Kuhsel M (1988) PhD thesis, University of Düsseldorf

  • Lipman DJ, Pearson WR (1985) Science 227:1435–1441

    Google Scholar 

  • Manzara T, Hallick RB (1988) Nucleic Acids Res 16:9866

    Google Scholar 

  • McCarn DF, Whitaker RA, Alam J, Vrba JM, Curtis SE (1988) J Bacteriol 170:3448–3458

    Google Scholar 

  • Michalowski CB, Pfanzagl B, Löffelhardt W, Bohnert HJ (1990) Mol Gen Genet 224:222–231

    Google Scholar 

  • Michel F, Jacquier A, Dujon B (1982) Biochimie 64:867–881

    Google Scholar 

  • Michel F, Umesono K, Ozeki H (1989) Gene 82:5–30

    Google Scholar 

  • Montandon P-E, Stutz E (1983) Nucleic Acids Res 11:5877–5892

    Google Scholar 

  • Mount DW, Conrad B (1986) Nucleic Acids Res 14:443–454

    Google Scholar 

  • Nechushtai R, Nelson N, Mattoo AK, Edelmann M (1981) FEBS Lett 125:115–119

    Google Scholar 

  • Nickoloff JA, Christopher DA, Drager RG, Hallick RB (1989) Nucleic Acids Res 17:4882

    Google Scholar 

  • Nielsen J, Hansen FG, Hoppe J, Friedl P, von Meyenburg K (1981) Mol Gen Genet 184:33–39

    Google Scholar 

  • Ohyama K, Fukuzawa H, Kohchi T, Sano T, Sano S, Shirai H, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi H, Ozeki H (1988) J Mol Biol 203:281–298

    Google Scholar 

  • Palmer JD (1991) Plastid chromosomes: structure and evolution. In: Bogorad L, Vasil IK (eds) Molecular biology of plastids. Academic Press, San Diego, pp 5–53

    Google Scholar 

  • Passavant CW, Hallick RB (1985) Plant Mol Biol 4:347–354

    Google Scholar 

  • Peebles C, Perlman P, Mecklenburg K, Petrillo M, Tabor J, Jarrell K, Cheng H-L (1986) Cell 44:213–223

    Google Scholar 

  • Rosen KM, Lamperti ED, Villa-Komaroff L (1990) Biotechniques 8:398–403

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Press, Cold Spring Harbor, New York

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) EMBO J 5:2043–2049

    Google Scholar 

  • Siemeister G, Buchholz C, Hachtel W (1990) Mol Gen Genet 220:425–432

    Google Scholar 

  • Southern EM (1975) J Mol Biol 98:503–517

    Google Scholar 

  • Stevenson JK, Drager RG, Copertino DW, Christopher DA, Jenkins KP, Yepiz-Plascencia G, Hallick RB (1991) Mol Gen Genet 228:183–192

    Google Scholar 

  • Sugiura M (1989) Annu Rev Cell Biol 5:51–70

    Google Scholar 

  • Turmel M, Lemieux B, Lemieux C (1988) Mol Gen Genet 214:412–419

    Google Scholar 

  • Vieira J, Messing J (1987) Methods Enzymol 15:3–11

    Google Scholar 

  • Westhoff P, Nelson N, Bunemann H, Herrman RG (1981) Curr Genet 4:109–120

    Google Scholar 

  • Westhoff P, Alt J, Widger WR, Cramer WA, Hermann RG (1985) Plant Mol Biol 4:103–110

    Google Scholar 

  • Woessner JP, Gillham NW, Boynton JE (1986) Gene 44:17–28

    Google Scholar 

  • Yepiz-Plascencia G, Jenkins ME, Hallick RB (1988) Nucleic Acids Res 16:9340

    Google Scholar 

  • Yepiz-Plascencia GM, Radebaugh CA, Hallick RB (1990) Nucleic Acids Res 18:1869–1878

    Google Scholar 

  • Zurawski G, Clegg MT (1984) Nucleic Acids Res 12:2549–2559

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by D. R. Wolstenholme

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drager, R.G., Hallick, R.B. A novel Euglena gracilis chloroplast operon encoding four ATP synthase subunits and two ribosomal proteins contains 17 introns. Curr Genet 23, 271–280 (1993). https://doi.org/10.1007/BF00351506

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00351506

Key words

Navigation