Skip to main content
Log in

Light and electron microscopy of rat kangaroo cells in mitosis

II. Kinetochore structure and function

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Kinetochores in rat kangaroo (PtK2) cells in prophase of mitosis are finely fibrillar, globular bodies, 5000–8000 Å in diameter. Sister kinetochores are attached to opposite lateral faces in the primary constriction of chromosomes. No microtubules (MTs) occur in prophase nuclei. During prometaphase the ball-shaped kinetochores differentiate into trilaminar plaques. An outer kinetochore layer, less electron dense than chromatin, appears first in the fibrillar matrix. The inner layer, continuous with, but more electron dense than the chromosome, is formed later. Kinetochore-spindle MT interaction is evident at the very beginning of prometaphase. As a result, kinetochore shape is very variable, but three types of kinetochores can be distinguished by fine structure analysis. A comparison of kinetochore structure and chromosome position in the mitotic spindle yielded clues regarding initial orientation and congression. At the time the nuclear envelope (NE) breaks down chromosomes near asters orient first. Chromosomes approximately equidistant from the two spindle poles amphi-orient immediately. Chromosomes closer to one pole probably achieve mono-orientation first, then amphi-orient and congress. In normal metaphase all the chromosomes lie at or near the spindle equator and kinetochores are structurally uniform. Paraxial and para-equatorial sections revealed that they are trilaminar, roughly circular plaques of 4000–6000 Å diameter. Inner and outer layers are 400 Å, and the electron translucent middle layer which separates them is 270 Å thick. From 16 to 40 MTs are anchored in the outer layer. In cold-treated cells the kinetochores are trilaminar, but in colcemid-treated cells the inner layer is lacking. Both kinetochores and their MTs are disorganized beginning in late anaphase. In telophase the inner layer persists for some time as an electron dense patch apposed to the NE, while the outer layer disintegrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnicot, N. A., Huxley, H. E.: Electron microscope observations on mitotic chromosomes. Quart. J. micr. Sci. 106, 197–214 (1965).

    Google Scholar 

  • Bauer, H., Dietz, R., Röbbelen, C.: Die Spermatocytenteilungen der Tipuliden. III. Mitt. Das Bewegungsverhalten der Chromosomen in Translokationsheterozygoten von Tipula oleracea. Chromosoma (Berl.) 12, 116–189 (1961).

    Google Scholar 

  • Brinkley, B. R., Cartwright, J., Jr.: Organization of microtubules in the mitotic spindle: Differential effects of cold shock on microtubule stability. J. Cell Biol. 47, 25a (1970) (abstr.).

  • Brinkley, B. R., Cartwright, J., Jr.: Ultrastructural analysis of mitotic spindle elongation in mammalian cells in vitro. Direct microtubule counts. J. Cell Biol. 50, 416–431 (1971).

    Google Scholar 

  • Brinkley, B. R., Murphy, P., Richardson, L. C.: Procedure for embedding in situ selected cells cultured in vitro. J. Cell Biol. 35, 279–283 (1967).

    Google Scholar 

  • Brinkley, B. R., Stubblefield, E.: The fine structure of the kinetochore of a mammalian cell in vitro. Chromosoma (Berl.) 19, 28–43 (1966).

    Google Scholar 

  • Brinkley, B. R., Stubblefield, E.: Ultrastructure and interaction of the kinetochore and centriole in mitosis and meiosis. Advanc. Cell Biol. 1, 119–185 (1970).

    Google Scholar 

  • Comings, D. E., Okada, T. A.: Fine structure of kinetochore in Indian muntjac. Exp. Cell Res. 67, 97–110 (1971).

    Google Scholar 

  • George, P., Journey, L. J., Goldstein, M. N.: Effect of vincristine on the fine structure of HeLa cells during mitosis. J. nat. Cancer Inst. (Wash.) 35, 355–375 (1965).

    Google Scholar 

  • Jokelainen, P. T.: The differentiation of sister kinetochores during metakinesis. J. Cell Biol. 27, 48a (1965) (abstr.).

  • Jokelainen, P. T.: The ultrastructure and spatial organization of the metaphase kinetochore in mitotic rat cells. J. Ultrastruct. Res. 19, 19–44 (1967).

    Google Scholar 

  • Journey, L. J., Whaley, A.: Kinetochore ultrastructure in vincristine-treated mammalian cells. J. Cell Sci. 7, 49–54 (1970).

    Google Scholar 

  • Krishan, A.: Fine structure of the kinetochores in vinblastine sulfate-treated cells. J. Ultrastruct. Res. 23, 134–143 (1968).

    Google Scholar 

  • Krishan, A., Buck, R. C.: Structure of the mitotic spindle in L strain fibroblasts. J. Cell Biol. 24, 433–444 (1965).

    Google Scholar 

  • Lambert, A. M.: Étude de structures cinétiques en rapport avec la rupture de la membrane nucléaire, en début de méiose chez Mnium hornum L. Organisation des centromères. C. R. Acad. Sci. (Paris) D 270, 481–484 (1970).

    Google Scholar 

  • Luft, J. H.: Improvements in epoxy resin embedding methods. J. biophys. biochem. Cytol. 9, 409–414 (1961).

    Google Scholar 

  • Luykx, P.: The structure of the kinetochore in meiosis and mitosis in Urechis eggs. Exp. Cell Res. 39, 643–657 (1965).

    Google Scholar 

  • McIntosh, J. R., Landis, S. C.: The distribution of spindle microtubules during mitosis in cultured human cells. J. Cell Biol. 49, 468–497 (1971).

    Google Scholar 

  • Millonig, G.: Advantages of a phosphate buffer for OsO4 solutions in fixation. J. appl. Phys. 32, 1637 (abstr.) (1961).

    Google Scholar 

  • Nebel, B. R., Coulon, E. M.: The fine structure of chromosomes in pigeon spermatocytes. Chromosoma (Berl.) 13, 272–291 (1962).

    Google Scholar 

  • Nicklas, R. B.: Chromosome micromanipulation. II. Induced reorientation and the experimental control of segregation in meiosis. Chromosoma (Berl.) 21, 17–50 (1967).

    Google Scholar 

  • Nicklas, R. B.: Mitosis. Advanc. Cell Biol. 2, 225–297 (1971).

    Google Scholar 

  • Östergren, G.: The mechanism of co-orientation in bivalents and multivalents. The theory of orientation by pulling. Hereditas (Lund) 37, 85–156 (1951).

    Google Scholar 

  • Pickett-Heaps, J. D., Fowke, L. C.: Cell division in Oedogonium. I. Mitosis, cytokinesis, and cell elongation. Aust. J. biol. Sci. 22, 857–894 (1969).

    Google Scholar 

  • Reynolds, E. S.: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963).

    Google Scholar 

  • Robbins, E., Gonatas, N. K.: The ultrastructure of a mammalian cell during the mitotic cycle. J. Cell Biol. 21, 429–463 (1964).

    Google Scholar 

  • Roos, U.-P.: Normal and abnormal mitosis in a mammalian cell in vitro. A light and electron microscopic study. 275 p. Doctoral Dissertation, University of Florida 1971.

  • Roos, U.-P.: Light and electron microscopy of rat kangaroo cells in mitosis. I. Formation and breakdown of the mitotic apparatus. Chromosoma (Berl.) 40, 43–82 (1973).

    Google Scholar 

  • Roth, L. E.: Electron microscopy of mitosis in amebae. III. Cold and urea treatments: A basis for tests of direct effects of mitotic inhibitors on microtubule formation. J. Cell Biol. 34, 47–60 (1967).

    Google Scholar 

  • Watson, M. L.: Staining of tissue sections for electron microscopy with heavy metals. J. biophys. biochem. Cytol. 4, 475–478 (1958).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roos, U.P. Light and electron microscopy of rat kangaroo cells in mitosis. Chromosoma 41, 195–220 (1973). https://doi.org/10.1007/BF00319696

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00319696

Keywords

Navigation