Skip to main content
Log in

Isozymes, plant population genetic structure and genetic conservation

  • Review
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Summary

The exploration, conservation and use of the genetic resources of plants is a contemporary issue which requires a multidisciplinary approach. Here the role of population genetic data, particularly those derived from electrophoretic analysis of protein variation, is reviewed. Measures of the geographic structure of genetic variation are used to check on sampling theory. Current estimates justify the contention that alleles which have a highly localised distribution, yet are in high frequency in some neighbourhoods, represent a substantial fraction of the variation. This class, which is the most important class in the framing of sampling strategies, accounts for about 20–30% of variants found in 12 plant species. The importance of documenting possible coadapted complexes and gene-environment relationships is discussed. Furthermore, the genetic structure of natural populations of crop relatives might suggest the best structure to use in the breeding of crops for reduced vulnerability to pest and disease attack, or for adaptation to inferior environments. The studies reported to date show that whilst monomorphic natural populations do occur, particularly in inbreeding colonisers, or at the extreme margins of the distribution, polymorphism seems to be the more common mode. It is stressed here that the genetic resources of the wild relatives of crop plants should be systematically evaluated. These sources will supplement, and might even rival, the primitive land races in their effectiveness in breeding programmes. We may look forward to a wider application of gel electrophoresis in the evaluation of plant genetic resources because this technique is currently the best available for detecting genetic differences close to the DNA level on samples of reasonable size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Allard, R.W.: The mating system and microevolution. Genetics 79, (Suppl.) 115–126 (1975)

    Google Scholar 

  • Allard, R.W.; Babbel, G.R.; Clegg, M.T.; Kahler, A.L.: Evidence for coadaptation in Avena barbata. Proc. Nat. Acad. Sci. U.S.A. 69, 3043–3048 (1972)

    Google Scholar 

  • Allard, R.W.; Hansche, P.W.: Some parameters of population variability and their implications in plant breeding. Advan. Agron. 16, 281–335 (1964)

    Google Scholar 

  • Allard, R.W.; Kahler, A.L.; Weir, B.S.: Isozyme polymorphisms in barley populations. Barley Genetics 2, 1–13 (1971)

    Google Scholar 

  • Ashri, A.: Evaluation of the world collection of safflower, Carthamus tinctorius L. I. Reaction to several diseases and associations with morphological characters in Israel. Crop Sci. 11, 253–257 (1971)

    Google Scholar 

  • Babbel, G.R.; Selander, R.K.: Genetic variability in edaphically restricted and widespread plant species. Evolution 28, 619–630 (1974)

    Google Scholar 

  • Babbel, G.R.; Wain, R.P.: Genetic structure of Hordeum jubatum I. Outcrossing rates and heterozygosity levels. Can. J. Genet. Cyt. 19, 143–152 (1977)

    Google Scholar 

  • Bal, B.S.; Suneson, C.A.; Ramage, R.T.: Genetic shift during 30 generations of natural selection in barley. Agron. J. 51, 555–557 (1959)

    Google Scholar 

  • Bergman, F.: Adaptive acid phosphatase polymorphism in conifer seeds. Silvae Genetica 24, 175–177 (1975)

    Google Scholar 

  • Bradshaw, A.D.: Some of the evolutionary consequences of being a plant. Evol. Biol. 5, 25–46 (1972)

    Google Scholar 

  • Briggs, D.; Walters, S.M.: Plant variation and evolution. London: Weidenfeld and Nicolson 1969

    Google Scholar 

  • Brink, R.A.; Densmore, J.W.; Hill, G.A.: Soil deterioration and the growing world demand for food. Science 197, 625–630 (1977)

    Google Scholar 

  • Brock, R.D.: The role of induced mutations in plant improvement. Radiat. Bot. 11, 181–196 (1971)

    Google Scholar 

  • Broue, P.; Marshall, D.R.; Muller, W.J.: Biosystematics of subgenus Glycine (Verdc.): Isoenzymatic data. Aust. J. Bot. 25, 555–566 (1977)

    Google Scholar 

  • Brown, A.H.D.; Daniels, J.; Latter B.D.H.; Krishnamurthi, M.: Quantitative genetics of sugarcane III. Potential for sucrose selection in Saccharum spontaneum. Theoret. Appl. Genet. 39, 79–87 (1969)

    Google Scholar 

  • Brown, A.H.D.; Marshall, D.R.; Albrecht, L.: The maintenance of alcohol dehydrogenase polymorphism in Bromus mollis L., Aust. J. Biol. Sci. 27, 545–559 (1974)

    Google Scholar 

  • Brown, A.H.D.; Marshall, D.R.; Munday, J.: Adaptedness of variants at an alcohol dehydrogenase locus in Bromus mollis. Aust. J. Biol. Sci. 29, 389–396 (1976)

    Google Scholar 

  • Brown, A.; Nevo, E.; Zohary, D.: Association of alleles at esterase loci in wild barley Hordeum spontaneum. Nature 268, 430–431 (1977)

    Google Scholar 

  • Brown, A.H.D.; Nevo, E.; Zohary, D.; Dagan, O.: Genetic variation in natural populations of wild barley (Hordeum spontaneum). In preparation (1978)

  • Cavalli-Sforza, L.L.; Bodmer, W.F.: The genetics of human populations. San Fransisco: Freeman 1971

    Google Scholar 

  • Clegg, M.T.: Patterns of genetic differentiation in natural populations of wild oats. Unpub. Ph.D. Thesis. Univ. of Calif. Davis (1969)

    Google Scholar 

  • Clegg, M.T.; Allard, R.W.: Patterns of genetic differentiation in the slender wild oat species Avena barbata. Proc. Nat. Acad. Sci. U.S.A. 69, 1820–1824 (1972)

    Google Scholar 

  • Clegg, M.T.; Allard, R.W.; Kahler, A.L.: Is the gene the unit of selection? Evidence from two experimental plant populations. Proc. Nat. Acad. Sci. U.S.A. 69, 2474–2478 (1972)

    Google Scholar 

  • Cullis, C.A.: Molecular aspects of the environmental induction of heritable changes in flax. Heredity 38, 129–154 (1977)

    Google Scholar 

  • Darwin, C: The Origin of Species. 6th edition. N.Y.: Collier 1872

    Google Scholar 

  • Day, P.R. (ed.): The genetic basis of epidemics in agriculture. Ann. N.Y. Acad. Sci. 287, 1–400 (1977)

  • Dinoor, A.: Oat crown rust resistance in Israel. Ann. N.Y. Acad. Sci. 287, 357–366 (1977)

    Google Scholar 

  • Dobzhansky, Th.: Genetics of the Evolutionary Process. N.Y.: Columbia 1970

  • Fedak, G.; Rajhathy, T.: Esterase isozymes in Canadian barley cultivars. Can. J. Plant Sci. 52, 507–516 (1972)

    Google Scholar 

  • Ford, E.B.: Ecological genetics. London: Chapman 1971

    Google Scholar 

  • Frankel, O.H.: Genetic conservation: Our evolutionary responsibility. Genetics 78, (Suppl.) 53–65 (1974)

    Google Scholar 

  • Frankel, O.H.: Genetic resources. Ann. N.Y. Acad. Sci. 287, 332–344 (1977)

    Google Scholar 

  • Frankel, O.H.: Bennett, E. (eds.): Genetic Resources in Plants — Their Exploration and Conservation. Oxford: Blackwell 1970

    Google Scholar 

  • Frankel, O.H.: Hawkes, J.G. (eds.): Crop genetic resources for today and tomorrow. Cambridge: C.U.P. 1975

    Google Scholar 

  • Fröst, S., Holm, G., Asker, S. Flavonoid patterns and the phylogeny of barley. Hereditas 79, 133–142 (1975)

    Google Scholar 

  • Goodman, M.M.: The races of maize. II. Use of multivariate analysis of variance to measure morphological similarity. Crop Sci. 8, 693–698 (1968)

    Google Scholar 

  • Gottlieb, L.D.: Allelic diversity in the outcrossing annual plant Stephanomeria exigua ssp. carotifera. (Compositae). Evolution 29, 213–225 (1975)

    Google Scholar 

  • Hamrick, J.L.; Allard, R.W.: Microgeographical variation in allozyme frequencies in Avena barbata. Proc. Nat. Acad. Sci. U.S.A. 69, 2100–2104 (1972)

    Google Scholar 

  • Harlan, J.R.: Our vanishing genetic resources. Science 188, 618–621 (1975)

    Google Scholar 

  • Harlan, J.R.: Sources of genetic defence. Ann. N.Y. Acad. Sci. 287, 345–356 (1977)

    Google Scholar 

  • Harlan, J.R.: Genetic resources in wild relatives of crops. Crop Science 16, 329–333 (1976)

    Google Scholar 

  • Hartley, W.: The phytogeographical basis of pasture plant introduction. Genetica Agraria 17, 135–146 (1963)

    Google Scholar 

  • Jain, S.K.: Population structure and the effects of breeding system. In: Crop Genetic Resources for Today and Tomorrow, (eds. Frankel, O.H.; Hawkes, J.G.), pp. 15–36. Cambridge: C.U.P. 1975

    Google Scholar 

  • Jain, S.K.: Patterns of survival and microevolution in plant populations. In: Population Genetics and Ecology, (eds. Karlin, S.; Nevo, E.), pp. 49–89. N.Y.: Academic Press 1976

    Google Scholar 

  • Jain, S.K.; Allard, R.W.: Population studies in predominantly self-pollinated species. I. Evidence for heterozygote advantage in a closed population of barley. Proc. Nat. Acad. Sci. U.S.A. 46, 1371–1377 (1960)

    Google Scholar 

  • Jain, S.K.; Qualset, CO.; Bhatt, G.M.; Wu, K.K.: Geographical patterns of phenotypic diversity in a world collection of durum wheats. Crop Science 15, 700–704 (1975)

    Google Scholar 

  • Johnson, G.B.: Enzyme polymorphism and metabolism. Science 184, 28–37 (1974)

    Google Scholar 

  • Kahler, A.L.; Allard, R.W.: Genetics of isozyme variants in barley. I. Esterases. Crop Science 10, 444–448 (1970)

    Google Scholar 

  • Kahler, A.L.; Allard, R.W.; Krzakowa, M.; Nevo, E.; Wehrhan, C.F.: Isozyme phenotype — environment associations in natural populations of the slender wild oat (Avena barbata) in Israel. In preparation (1977)

  • Koehn, R.K.: Esterase heterogeneity: Dynamics of a polymorphism. Science 163, 943–944 (1969)

    Google Scholar 

  • Levin, D.A.: Interspecific hybridization, heterozygosity and gene exchange in Phlox. Evolution 29, 37–51 (1975a)

    Google Scholar 

  • Levin, D.A.: Genic heterozygosity and protein polymorphism among local populations of Oenothera biennis. Genetics 79, 477–491 (1975b)

    Google Scholar 

  • Levin, D.A.: Consequences of long-term selection, inbreeding and isolation in Phlox. II. The organization of allozymic variability. Evolution 30, 463–472 (1976)

    Google Scholar 

  • Levins, R.: Theory of fitness in a heterogeneous environment. II. Developmental flexibility and niche selection. Amer. Natur. 97, 75–90 (1963)

    Google Scholar 

  • Levy, M.; Levin, D.A.: Genic heterozygosity and variation in permanent translocation heterozygotes of the Oenothera biennis complex. Genetics 79, 493–512 (1975)

    Google Scholar 

  • Lewontin, R.C.: The genetic basis of evolutionary change. N.Y.: Columbia Univ. Press. 1974

    Google Scholar 

  • Lundkvist, K.; Rudin, D.: Genetic variation in eleven populations of Picea abies as determined by isozyme analysis. Hereditas 85, 67–74 (1977)

    Google Scholar 

  • McNaughton, S.J.: Natural selection at the enzyme level. Amer. Natur. 108, 616–624 (1974)

    Google Scholar 

  • Marshall, D.R.: The advantages and disadvantages of genetic homogeneity. Ann. N.Y. Acad. Sci. 287, 1–20 (1977)

    Google Scholar 

  • Marshall, D.R.; Allard, R.W.: Maintenance of isozyme polymorphisms in natural populations of Avena barbata. Genetics 66, 393–399 (1970)

    Google Scholar 

  • Marshall, D.R.; Broue, P.; Pryor, A.J.: Adaptive significance of alcohol dehydrogenase isozymes in maize. Nature New Biol. 244, 16–17 (1973)

    Google Scholar 

  • Marshall, D.R., Brown, A.H.D.: Stability of performance of mixtures and multilines. Euphytica 22, 405–412 (1973)

    Google Scholar 

  • Marshall, D.R.; Brown, A.H.D.: The charge state model of protein polymorphism in natural populations. J. Molec. Evol. 6, 149–163 (1975a)

    Google Scholar 

  • Marshall, D.R.; Brown, A.H.D.: Optimum sampling strategies in genetic conservation. In: Crop Genetic Resources for Today and Tomorrow (eds. Frankel, O.H.; Hawkes, J.G.) pp. 53–80. Cambridge: C.U.P. 1975b

    Google Scholar 

  • Mather, K.: Genetical Structure of Populations. London: Chapman & Hall 1973

    Google Scholar 

  • Mayr, E.: Animal Species and Evolution. Cambridge, Mass.: Belknap 1965

    Google Scholar 

  • Miller, R.D.; Allard, R.W.: Additional patterns of genetic differentiation in Avena barbata in California. Genetics 83, s 50 (1976)

    Google Scholar 

  • Nakagahra, M.; Akihama, T.; Hayashi, K.: Genetic variation and geographic cline of esterase isozymes in native rice varieties. Japan. J. Genet. 50, 373–382 (1975)

    Google Scholar 

  • National Academy of Sciences: Genetic Vulnerability of Major Crops. Washington, D.C. 1972

  • Nei, M.: Molecular population genetics and evolution. N.Y.: Elsivier 1975

    Google Scholar 

  • Nevo, E.: Genetic variation in natural populations: patterns and theory. Theoret. Popn. Biology (in press) (1978)

  • Pai, C.; Endo, T.; Oka, H.I.: Genic analysis for peroxidase isozymes and their organ specificity in Oryza perennis and O. sativa. Can. J. Genet. Cytol. 15, 845–853 (1973)

    Google Scholar 

  • Pai, C., Endo, T.; Oka, H.I.: Genic analysis for acid phosphatase isozymes in Oryza perennis and O. sativa. Can. J. Genet. Cytol. 17, 637–650 (1975)

    Google Scholar 

  • Pickersgill, B.: Taxonomy and the origin and evolution of cultivated plants in the New World. Nature 268, 591–595 (1977)

    Google Scholar 

  • Qualset, C.O.: Sampling germplasm in a center of diversity: an example of disease resistance in Ethiopian barley. In: Crop Genetic Resources for Today and Tomorrow (eds. Frankel, O.H.; Hawkes, J.G.), pp. 81–96. Cambridge: C.U.P. 1975

    Google Scholar 

  • Reinert, J.; Bajaj, Y.P.S.: Applied and fundamental aspects of plant cell, tissue and organ culture. Berlin: Springer-Verlag 1977

    Google Scholar 

  • Rick, C.M.: Potential genetic resources in tomato species: Clues from observations in native habitats. In: Genes, Enzymes, Populations (ed. Srb, A.M.), pp. 255–269 N.Y.: Plenum 1973

    Google Scholar 

  • Rick, C.M.: Natural variability in wild species of Lycopersicon and its bearing on tomato breeding. Genet. Agr. 30, 249–259 (1976)

    Google Scholar 

  • Rick, C.M.; Fobes, J.F.: Allozymes of Galapagos tomatoes: Polymorphism, geographic distribution and affinities. Evolution 29, 443–457 (1975a)

    Google Scholar 

  • Rick, C.M., Fobes, J.F.: Allozyme variation in the cultivated tomato. Bull. Torrey Bot. Club 102, 376–384 (1975b)

    Google Scholar 

  • Rick, C.M.; Fobes, J.F.: Peroxidase complex with concomitant anodal and cathodal variation in red-fruited tomato species. Proc. Nat. Acad. Sci. U.S.A. 73, 900–904 (1976)

    Google Scholar 

  • Rick, C.M.; Fobes, J.F.; Holle, M.: Genetic variation in Lycopersicon pimpinellifolium: Evidence of evolutionary change in mating systems. Plant Syst. Evol. 127, 139–170 (1977)

    Google Scholar 

  • Rick, C.M.; Zobel, R.W.; Fobes, J.F.: Four peroxidase loci in red-fruited tomato species: Genetics and geographic distribution. Proc. Nat. Acad. Sci. U.S.A. 71, 835–839 (1974)

    Google Scholar 

  • Stuber, C.W.; Goodman, M.M.; Johnson, F.M.: Genetic control and racial variation of β-glucosidase isozymes in maize (Zea mays L.) Biochem. Genet. 15, 383–394 (1977)

    Google Scholar 

  • Shahi, B.B.; Morishima, H.; Oka, H.I.: A survey of variations in peroxidase, acid phosphatase and esterase isozymes of wild and cultivated Oryza species. Japan J. Genet. 44, 303–319 (1969)

    Google Scholar 

  • Suneson, C.A.; Wiebe, G.A.: A ‘Paul Bunyan’ plant breeding enterprise with barley. Crop Science 2, 347–348 (1962)

    Google Scholar 

  • Tigerstedt, P.M.A.: Genetic structure of Picea abies populations as determined by the isozyme approach. Proc. Joint IUFRO Meeting S02041-3 Stockholm 283–291 (1974)

  • Torres, A.M.; Diedenhofen, U.; Johnstone, I.M.: The early allele of alcohol dehydrogenase in sunflower populations. J. Heredity 68, 11–16 (1977)

    Google Scholar 

  • Wall, J.R.; Wall, S.W.: Isozyme polymorphisms in the study of evolution in the Phaseolus vulgaris — P. coccineus complex in Mexico. In: Isozymes IV Genetics and Evolution (ed. Markert, C.L.), pp. 287–306. N.Y.: Academic 1975

    Google Scholar 

  • Weir, B.S.; Allard, R.W.; Kahler, A.L.: Further analysis of complex allozyme polymorphisms in a barley population. Genetics 78, 911–919 (1974)

    Google Scholar 

  • Whyte, R.O.: The conservation of wild species. Genetica Agraria 17, 398–402 (1963)

    Google Scholar 

  • Wright, S.: Evolution and the genetics of populations II. Chicago: Univ. Chicago Press 1969

    Google Scholar 

  • Zohary, D.: The progenitors of wheat and barley in relation to domestication and agricultural dispersal in the Old World. In: The Domestication and Exploration of Plants and Animals (eds. Ucko, P.J.; Dimbley, G.W.) pp. 47–66 London: Duckworth 1969

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J.F.S. Barker

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, A.H.D. Isozymes, plant population genetic structure and genetic conservation. Theoret. Appl. Genetics 52, 145–157 (1978). https://doi.org/10.1007/BF00282571

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00282571

Key words

Navigation