Skip to main content
Log in

Mossy and climbing fibre activation in the cat cerebellum by stimulation of the labyrinth

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

In decerebrate cats, caloric and galvanic stimulations of the labyrinth were able to modulate the activity of the Purkinje cells through both the afferents which terminate in the cerebellar cortex as mossy fibres and climbing fibres.

In response to these stimulations, several patterns of response were seen. For the galvanic stimulation a predominant pattern was described. In most cases the mossy fibre driven activity had an effect which was opposite to that of the climbing fibre one.

The climbing fibre driven activity could be modulated only in the low frequency range, but it can interfere remarkably with the mossy fibre one. The results described were obtained not only in the so-called vestibular area of the cerebellum, but also in other areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersson, S., Gernandt, B.E.: Cortical projection of vestibular nerve in cat. Acta otolaryng. (Stockh.) Suppl. 116, 10–18 (1954).

    Google Scholar 

  • Arduini, A., Pompeiano, O.: Microelectrode analysis of units of the rostral portion of the nucleus fastigii. Arch. ital. Biol. 95, 56–70 (1957).

    Google Scholar 

  • Armstrong, D.M., Eccles, J.C., Harvey, R.J., Matthews, P.B.C.: Responses in the dorsal accessory olive of the cat to stimulation of hind limb afferents. J. Physiol. (Lond.) 194, 125–145 (1968).

    Google Scholar 

  • Azzena, G.B.: Otholitic influences on the unitary discharge of the oculomotor nucleus. Brain Res. 2, 218–232 (1966).

    Google Scholar 

  • —: Rhythmical cerebellar responses to labyrinthine stimulation. Acta oto-laryng. (Stockh.) 67, 619–630 (1969).

    Google Scholar 

  • Bell, C.C., Grimm, R.J.: Discharge properties of Purkinje cells recorded on single and double microelectrodes. J. Neurophysiol. 32, 1044–1055 (1970).

    Google Scholar 

  • Brodal, A., Høivik, B.: Site and mode of termination of primary vestibulo-cerebellar fibres in the cat. An experimental study with silver impregnation methods. Arch. ital. Biol. 102, 1–21 (1964).

    Google Scholar 

  • —, Pompeiano, O., Walberg, F.: The Vestibular Nuclei and Their Connections. Anatomy and Functional Correlation. Edinburgh-London: Oliver & Boyd 1962.

    Google Scholar 

  • Crill, W.E.: Unitary multiple-spiked responses in cat inferior olive nucleus. J. Neurophysiol. 33, 199–209 (1970).

    Google Scholar 

  • De Vito, R.V., Brusa, A., Arduini, A.: Cerebellar and vestibular influences on Deitersian units. J. Neurophysiol. 19, 241–253 (1956).

    Google Scholar 

  • Dow, R.S.: Cerebellar action potentials in response to stimulation of various afferent connections. J. Neurophysiol. 2, 543–555 (1939).

    Google Scholar 

  • —, Moruzzi, G.: The Physiology and Pathology of the Cerebellum. Minneapolis: University of Minnesota Press 1958.

    Google Scholar 

  • Eccles, J.C.: The way in which the cerebellum processes sensory information from muscle. In: Neurophysiological Basis of Normal and Abnormal Activities, pp. 379–414. Ed. by M.D. Yahr and D.P. Purpura. Hewlett, N.Y.: Raven Press 1967.

    Google Scholar 

  • —: The topography of the mossy and climbing fiber inputs to the anterior lobe of the cerebellum. In: The Cerebellum in Health and Disease, pp. 231–266. Compiled and Edited by W.S. Fields and W.D. Willis Jr. St. Louis, Mo.: Warren H. Green, Inc. 1970.

    Google Scholar 

  • —, Ito, M., Szentágothai, J.: The Cerebellum as a Neuronal Machine. Berlin-Heidelberg-New York: Springer 1967.

    Google Scholar 

  • —, Provini, L., Strata, P., Taborikova, H.: Topographical investigations on the climbing fiber inputs from forelimb and hindlimb afferents to the cerebellar anterior lobe. Exp. Brain Res. 6, 195–215 (1968).

    Google Scholar 

  • Ehrhardt, K.J., Wagner, A.: Labyrinthine and neck reflexes recorded from spinal single motoneurons in the cat. Brain Res. 19, 87–104 (1970).

    Google Scholar 

  • Ferin, M., Grigorian, R.A., Strata, P.: Purkinje cell activation by stimulation of the labyrinth. Pflügers Arch. 321, 253–258 (1970).

    Google Scholar 

  • Fernandez, C.: Interrelations between flocculonodular lobe and vestibular system. In: Neural Mechanisms of the Auditory and Vestibular Systems, pp. 285–296. Ed. by G.L. Rasmussen and W.F. Windle. Springfield, Ill.: Charles C. Thomas 1960.

    Google Scholar 

  • Gernandt, B.E.: Response of mammalian vestibular neurons to horizontal rotation and caloric stimulation. J. Neurophysiol. 12, 173–184 (1949).

    Google Scholar 

  • —: The effects of vestibular stimulation upon the activity of the primary motor neurons of the spinal cord. Acta physiol. scand. 27, 169–182 (1953).

    Google Scholar 

  • —: Vestibular mechanisms. In: Handbook of Physiology, Neurophysiology, Sect. 1, Vol. I, pp. 549–564. Ed. by J. Field, H.W. Magoun and V.E. Hall. Baltimore, Md.: Williams & Wilkins Co. 1959.

    Google Scholar 

  • —: Generation of labyrinthine impulses, descending vestibular pathways and modulation of vestibular activity by proprioceptive, cerebellar, and reticular influences. In: Neural Mechanisms of the Auditory and Vestibular Systems, pp. 324–348. Ed. by G.L. Rasmussen and W.F. Windle. Springfield, Ill.: Charles C. Thomas 1960.

    Google Scholar 

  • Gernandt, B.E., Igarashi, M., Ades, H.W.: Effects of prolonged caloric stimulation upon oculomotor, vestibulospinal and segmental spinal activity. Exp. Neurol. 14, 249–263 (1966).

    Google Scholar 

  • —, Gilman, S.: Descending vestibular activity and its modulation by proprioceptive cerebellar and reticular influences. Exp. Neurol. 1, 274–304 (1959).

    Google Scholar 

  • —, Iranyi, M., Livingston, R.B.: Vestibular influences on spinal mechanisms. Exp. Neurol. 1, 248–273 (1959).

    Google Scholar 

  • —, Thulin, C.A.: Vestibular connections of the brain stem. Amer. J. Physiol. 171, 121–127 (1952).

    Google Scholar 

  • Grigorian, R.A., Kristi, E.M.: Reaction of neurones of nuclei of cat cerebellum to adequate stimulation of vestibular apparatus. Dokl. Akad. Nauk SSSR 188, 249–252 (1969) (In Russian).

    Google Scholar 

  • Jansen, J., Brodal, A.: Das Kleinhirn. In: Handbuch der mikroskopischen Anatomie des Menschen, Bd. IV/8, Nervensystem, p. 323. Hrsg. von W.V. Möllendorff u. W. Bargmann. Berlin-Göttingen-Heidelberg: Springer 1958.

    Google Scholar 

  • Larsell, O.: The cerebellum of the cat and the monkey. J. comp. Neurol. 99, 135–199 (1953).

    Google Scholar 

  • Llinás, R., Bloedel, J.R., Hillman, D.E.: Functional characterization of neuronal circuitry of frog cerebellar cortex. J. Neurophysiol. 32, 847–870 (1969).

    Google Scholar 

  • Lowenstein, O.: The effect of galvanic polarization of the impulse discharge from sense endings in the isolated labyrinth of the thornback ray (Raja clavata). J. Physiol. (Lond.) 127, 104–117 (1955).

    Google Scholar 

  • Marchesi, G.F., Strata, P.: Climbing fibers of cat cerebellum: modulation of activity during sleep. Brain Res. 17, 145–148 (1970).

    Google Scholar 

  • Marr, D.: A theory of cerebellar cortex. J. Physiol. (Lond.) 202, 437–470 (1969).

    Google Scholar 

  • Miller, S., Nezlina, N., Oscarsson, O.: Projection and convergence patterns in climbing fibre paths to cerebellar anterior lobe activated from cerebral cortex and spinal cord. Brain Res. 14, 230–233 (1969).

    Google Scholar 

  • Oscarsson, O.: Functional organization of the spino and cuneo-cerebellar tracts. Physiol. Rev. 45, 495–522 (1965).

    Google Scholar 

  • —: Functional significance of information channels from the spinal cord to the cerebellum. In: Neurophysiological Basis of Normal and Abnormal Motor Activities, pp. 93–117. Ed. by M.D. Yahr and D.P. Purpura. Hewlett, N.Y.: Raven Press 1967.

    Google Scholar 

  • —: Termination and functional organization of the ventral spino-olivocerebellar path. J. Physiol. (Lond.) 196, 453–478 (1968).

    Google Scholar 

  • —: Termination and functional organization of the dorsal spino-olivocerebellar path. J. Physiol. (Lond.) 200, 129–149 (1969).

    Google Scholar 

  • Precht, W., Llinás, R.: Functional organization of the vestibular afferents to the cerebellar cortex of frog and cat. Exp. Brain Res. 9, 30–52 (1969).

    Google Scholar 

  • Provini, L., Redman, S., Strata, P.: Mossy and climbing fibre organization on the anterior lobe of the cerebellum activated by forelimb and hindlimb areas of the sensorimotor cortex. Exp. Brain Res. 6, 216–233 (1968).

    Google Scholar 

  • Ramón y Cajal, S.: Histologie du Système Nerveux de l'Homme et des Vertébrés. 2 vols. Paris: Maloine 1911.

    Google Scholar 

  • Riva-Sanseverino, E., Urbano, A.: Electrical activity of paraflocculus and other cerebellar lobuli following vestibular rotatory stimulation in the cat. Arch. Sci. Biol. 49, 83–96 (1965).

    Google Scholar 

  • Rossi, G.F., Zanchetti, A.: The brain stem reticular formation. Anatomy and physiology. Arch. ital. Biol. 95, 199–435 (1957).

    Google Scholar 

  • Sans, A., Raymond, J., Marty, R.: Réponses thalamiques et corticales à la stimulation électrique du nerf vestibulaire chez le chat. Exp. Brain Res. 10, 265–275 (1970).

    Google Scholar 

  • Sedgwick, E.G., Williams, T.D.: Responses of single units in the inferior olive to stimulation of the limb nerves, peripheral skin receptors, cerebellum, caudate nucleus and motor cortex. J. Physiol. (Lond.) 189, 261–279 (1967).

    Google Scholar 

  • Snider, R.S.: Alterations which occur in mossy terminals of the cerebellum following transection of a brachium pontis. J. comp. Neurol. 64, 417–435 (1936).

    Google Scholar 

  • Steinhausen, W.: Über die Beobachtung der Cupula in den Bogengangsampullen des Labyrinths des lebenden Hechts. Pflügers Arch. ges. Physiol. 232, 500–512 (1933).

    Google Scholar 

  • Szentágothai, J., Rajkovits, K.: Über den Ursprung der Kletterfasern des Kleinhirns. Z. Anat. Entwickl.-Gesch. 121, 130–141 (1959).

    Google Scholar 

  • Thach, W.T.: Somatosensory receptive fields of single units in cat cerebellar cortex. J. Neurophysiol. 30, 675–696 (1967).

    Google Scholar 

  • —: Discharge of Purkinje and cerebellar nuclear neurons during rapidly alternating arm movements in the monkey. J. Neurophysiol. 31, 785–797 (1968).

    Google Scholar 

  • Ventzel, M.D., Gazenko, O.G., Grigorian, R.A., Kristi, E.M.: Analysis of the electrical reactions of the cerebellum of cats to an adequate vestibular excitation by motion. Izv. Akad. Nauk SSSR, Ser. Biologicheskaja, No. 4, 545–559 (1969). (In Russian).

  • Walberg, F.: Descending connections to the inferior olive: An experimental study in the cat. J. comp. Neurol. 104, 77–174 (1956).

    Google Scholar 

  • Wall, P.D.: The origin of a spinal-cord slow potential. J. Physiol. (Lond.) 164, 508–526 (1962).

    Google Scholar 

  • Weber, G., von, Steiner, F.A.: Labyrinthär erregbare Neurone im Hirnstamm und Kleinhirn der Katze. Helv. Physiol. Acta 23, 61–81 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From the International Institute for the Study of Human Reproduction, College of Physicians and Surgeons, Columbia University, New York, N.Y. 10032 USA.

From the Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of USSR, Leningrad K-223, Thorez pr. 52, USSR.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferin, M., Grigorian, R.A. & Strata, P. Mossy and climbing fibre activation in the cat cerebellum by stimulation of the labyrinth. Exp Brain Res 12, 1–17 (1971). https://doi.org/10.1007/BF00234413

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00234413

Key Words

Navigation