Skip to main content
Log in

Bonferroni-type inequalities; Chebyshev-type inequalities for the distributions on [0, n]

  • Fundamental Inequality
  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

An elementary “majorant-minorant method” to construct the most stringent Bonferroni-type inequalities is presented. These are essentially Chebyshev-type inequalities for discrete probability distributions on the set {0, 1,..., n}, where n is the number of concerned events, and polynomials with specific properties on the set lead to the inequalities. All the known results are proved easily by this method. Further, the inequalities in terms of all the lower moments are completely solved by the method. As examples, the most stringent new inequalities of degrees three and four are obtained. Simpler expressions of Mărgăritescu's inequality (1987, Stud. Cerc. Mat., 39, 246–251), improving Galambos' inequality, are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alt, F. B. (1982). Bonferroni inequalities and intervals, Encyclopedia of Statistical Sciences (eds. S. Kotz and N. L. Johnson), Vol. 1, 294–300, Wiley, New York.

    Google Scholar 

  • Galambos, J. (1975). Methods for proving Bonferroni type inequalities, J. London Math. Soc. (2), 9, 561–564.

    Google Scholar 

  • Galambos, J. (1977). Bonferroni inequalities, Ann. Probab., 5, 577–581.

    Google Scholar 

  • Galambos, J. (1984). Order statistics, Handbook of Statistics, Vol. 4, Nonparametric Methods (eds. P. R. Krishnaiah and P. K. Sen), 359–382, North Holland, Amsterdam.

    Google Scholar 

  • Galambos, J. (1987). The Asymptotic Theory of Extreme Order Statics, 2nd ed., Robert E. Krieger Publ., Malabar, Florida.

    Google Scholar 

  • Hailperin, T. (1965). Best possible inequalities for the probability of a logical function of events, Amer. Math. Monthly, 72, 343–359.

    Google Scholar 

  • Hunter, D. (1976). An upper bound for the probability of a union, J. Appl. Probab., 13, 597–603.

    Google Scholar 

  • Isii, K. (1964). Inequalities of the types of Chebyshev and Cramér-Rao and mathematical programming, Ann. Inst. Statist. Math., 16, 277–293.

    Google Scholar 

  • Jordan, C. (1960). Calculus of Finite Difference, Chelsea, New York.

    Google Scholar 

  • Keilson, J. and Gerber, H. (1971). Some results for discrete unimodality, J. Amer. Statist. Assoc., 66, 386–389.

    Google Scholar 

  • Knuth, D. (1975). Fundamental Algorithms, The Art of Computer Programming, Vol. 1, 2nd ed., Addison-Wesley, Reading, Massachusetts.

    Google Scholar 

  • Kounias, S. and Marin, J. (1976). Best linear Bonferroni bounds, SIAM J. Appl. Math., 30, 307–323.

    Google Scholar 

  • Kwerel, S. M. (1975a). Most stringent bounds on aggregated probabilities of partially specified dependent probability systems, J. Amer. Statist. Assoc., 70, 472–479.

    Google Scholar 

  • Kwerel, S. M. (1975b). Bounds on the probability of the union and intersection of m events, Adv. in Appl. Probab., 7, 431–448.

    Google Scholar 

  • Kwerel, S. M. (1975c). Most stringent bounds on the probability of the union and intersection of m events for systems partially specified by S 1, S 2, ..., S k , 2≤km, J. Appl. Probab., 12, 612–619.

    Google Scholar 

  • Loève, M. (1942). Sur les systèmes d'événements. Ann. Univ. Lyon, A, 5, 55–74.

    Google Scholar 

  • Loève, M. (1963). Probability Theory, 2nd ed., Van Nostrand, Princeton, New Jersey.

    Google Scholar 

  • Mărgăritescu, E. (1987). On some Bonferroni inequalities, Stud. Cerc. Mat., 39, 246–251.

    Google Scholar 

  • Móri, T. F. and Székely, G. J. (1985). A note on the background of several Bonferroni-Galambos-type inequalities, J. Appl. Probab., 22, 836–843.

    Google Scholar 

  • Platz, O. (1985). A sharp upper probability bound for the occurrence of at least m out of n events, J. Appl. Probab., 12, 978–981.

    Google Scholar 

  • Recsei, E. and Seneta, E. (1987). Bonferroni-type inequalities, Adv. in Appl. Probab., 19, 508–511.

    Google Scholar 

  • Rényi, A. (1961). A general method for proving theorems in probability theory and some applications, MTA III. Oszt. Közl, 11, 79–105. (English translation (1976). Selected Papers of A. Rényi, Vol. 2, 581–602, Akadémiai Kiadó, Budapest.)

    Google Scholar 

  • Riordan, J. (1968). Combinatorial Identities, Wiley, New York.

    Google Scholar 

  • Samuels, S. M. and Studden, W. J. (1989). Bonferroni-type probability bounds as an application of the theory of Tchebycheff systems, Probability, Statistics, and Mathematics, Papers in Honor of Samuel Karlin (eds. T. W. Anderson, K. B. Athreya and D. L. Iglehart), Academic Press, Boston, Massachussets.

    Google Scholar 

  • Sathe, Y. S., Pradhan, M. and Shah, S. P. (1980). Inequalities for the probability of the occurrence of at least m out of n events, J. Appl. Probab., 17, 1127–1132.

    Google Scholar 

  • Schwager, S. J. (1984). Bonferroni sometimes loses, Amer. Statist., 38, 192–197.

    Google Scholar 

  • Sibuya, M. (1991). An identity for sums of binomial coefficients, SIAM Rev. (in print).

  • Simes, R. J. (1986). An improved Bonferroni procedure for multiple tests of significance, Biometrika, 73, 751–754.

    Google Scholar 

  • Takeuchi, K. and Takemura, A. (1987). On sum of 0–1 random variables I. Univariate case, Ann. Inst. Statist. Math., 39, 85–102.

    Google Scholar 

  • Walker, A. M. (1981). On the classical Bonferroni inequalities and the corresponding Galambos inequalities, J. Appl. Probab., 18, 757–763.

    Google Scholar 

  • Worsley, K. J. (1982). An improved Bonferroni inequality and applications, Biometrika, 69, 297–302.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Sibuya, M. Bonferroni-type inequalities; Chebyshev-type inequalities for the distributions on [0, n]. Ann Inst Stat Math 43, 261–285 (1991). https://doi.org/10.1007/BF00118635

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00118635

Key words and phrases

Navigation