Skip to main content
Log in

Can we determine the biological availability of sediment-bound trace elements?

  • Bioavailability and toxic effects
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

It is clear from available data that the susceptibility of biological communities to trace element contamination differs among aquatic environments. One important reason is that the bioavailability of metals in sediments appears to be altered by variations in sediment geochemistry. However, methods for explaining or predicting the effect of sediment geochemistry upon metal bioavailability are poorly developed. Experimental studies demonstrate that ingestion of sediments and uptake from solution may both be important pathways of metal bioaccumulation in deposit/detritus feeding species. Relative importance between the two is geochemistry dependent. Geochemical characteristics of sediments also affect metal concentrations in the tissues of organisms collected from nature, but the specific mechanisms by which these characteristics influence metal bioavailability have not been rigorously demonstrated. Several prerequisites are necessary to better understand the processes that control metal bioavailability from sediments. 1) improved computational or analytical methods for analyzing distribution of metals among components of the sediments; 2) improved computational methods for assessing the influences of metal form in sediments on sediment-water metal exchange; and 3) a better understanding of the processes controlling bioaccumulation of metals from solution and food by metazoan species directly exposed to the sediments. Such capabilities would allow mechanistic explanations essential to the development of practical tools sought for determining sediment quality criteria for metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, D. M. & F. M. M. Morel, 1978. Copper sensitivity of Gonyaulax tamarensis. Limnnol. Oceanogr., 23: 283–295.

    Google Scholar 

  • Balistrieri, L. S. & J. W. Murray, 1982. The adsorption of Cu, Pb, Zn and Cd on goethite from major ion seawater. Geochim. Cosmochim. ACTA 46: 1253–1265.

    Google Scholar 

  • Blanck, H., 1984. Species dependent variation among aquatic organisms in their sensitivity to chemicals. In Rasmussen, L. (ed.) Ecotoxicology: Ecological Bulletins No. 36. AiO Printing Ltd, Odense: 107–119.

    Google Scholar 

  • Borchardt, T., 1983. Influence of food quantity on the kinetics of cadmium uptake and loss via food and seawater in Mytilus edulis. Mar. Biol. 76: 67–76.

    Google Scholar 

  • Borgmann, U. & K. M. Ralph, 1983. Complexation and toxicity of copper and the free metal bioassay technique. Wat. Res., 17: 1697–1703.

    Google Scholar 

  • Breteler, R. J., I. Valiela & J. M. Teal, 1981. Bioavailability of mercury in several Northeastern U.S. Spartina ecosystems. Estuarine, Coastal, Shelf Sci. 12: 155–166.

    Google Scholar 

  • Bryan, G. W., 1976. Some aspects of heavy metal tolerance in aquatic organisms. In Lockwood, A. P. M. (ed.), Effects of Pollutants on Aquatic Organisms. Cambridge University Press: 7–34.

  • Bryan, G. W., 1984. Pollution due to heavy metals and their compounds. In Kinne, O. (ed.), Marine Ecology v. 5, pt. 3, John Wiley and Sons, New York: 1289–1431.

    Google Scholar 

  • Bryan, G. W., 1985. Bioavilibility and effects of heavy metals in marine deposits. In Ketchum, B., J. Capuzzo, W. Burt, I. Duedall, P. Park & D. Kester (eds), Wastes in the Ocean, v. 6; Near Shore Waste Disposal. John Wileu and Sons, Inc. New York: 41–79.

    Google Scholar 

  • Bryan, G. W. & L. G. Hummerstone, 1977. Indicators of heavy-metal contamination in the Looe estuary (Cornwall) with particular regard to silver and lead. J. Mar. Biol. Assn. U.K. 57: 75–92.

    Google Scholar 

  • Bryan, G. W., W. J. Langston & L. G. Hummerstone, 1980. The use of biological indicators of heavy metal contamination in estuaries, with special reference to an assessment of the biological availability of metals in estuarine sediments from South-West Britain. Marine Biological Association of the United Kingdom Occasional Publication no. 1, 73 pp.

  • Bryan, G. W., W. J. Langston, L. G. Hummerstone & G. R. Burt, 1985. A Guide to the Assessment of Heavy-Metal Contamination in Estuaries Using Biological Indicators. Marine Biological Association of the United Kingdom Occasional Publication No. 4, Plymouth; 91 pp.

  • Cain, D. J. & S. N. Luoma, 1983. Copper and silver accumulation in transplanted and resident clams (Macoma balthica) in South San Francisco Bay. Mar. Environm. Res. 15: 115–135.

    Google Scholar 

  • Cain, D. J. & S. N. Luoma, 1986. Effect of seasonally changing tissue weight on trace metal concentrations in the bivalve Macoma balthica in San Francisco Bay. Mar. Ecol. Progress Series 28: 209–217.

    Google Scholar 

  • Cain, D. J., J. K. Thompson & S. N. Luoma, 1987. The effect of differential growth on spatial comparisons of copper content of a bivalve indicator. In Lindberg, S. E. & T. C. Hutchinson (eds) Heavy Metals in the Environment, CEP Consultants Ltd., Edinburgh: 455–458.

    Google Scholar 

  • Cairns, J., 1984. Factors moderating toxicity in surface waters; In Wilson J. (ed.), The Fate of Toxics in Surface and Ground waters. Acad. Nat. Sci. Philadelphia: 49–64.

    Google Scholar 

  • Campbell, P. G. C., A. G. Lesis, P. M. Chapman, W. K. Fletcher, B. E. Imber, S. N. Luoma, P. M. Stokes & M. Winfrey, 1988. Biologically available metals in sediments. Natl. Res. Council of Canada publ. 27694, Ottawa. 295 pp.

  • Campbell, P. G. C., A. Tessier, M. Bisson & R. Bougie, 1985. Accumulation of copper and zinc in the Yellow Water Lily, Nuphar variegatum: Relationships to metal partitioning in the adjacent lake sediments. Can. J. Fish Aquat. Sci. 42: 23–32.

    Google Scholar 

  • Crecelius, E. A., J. T. Hardy, C. I. Gibson, R. L. Schmidt, C. W. Apts, J.M. Hurtisen & S. P. Hoyce, 1982. Copper bioavailability to marine bivalves and shrimp: Relationship to cupric ion activity. Mar. Envir. Res. 6: 13–26.

    Google Scholar 

  • Cross, F. A. & W. G. Sunda, 1985. The relationship between chemical speciation and bioavailability of trace metals to marine organisms — A review. In Chao, N. L. and W. Kirby-Smith (eds) Proc. Sympos. on Utilization of Coastal Ecosystems, V. 1, Rio Grande, RS-Brasil: 169–182.

  • Cutshall, N. H., J. R. Naidu & W. G. Pearcy, 1977. Zinc and cadmium in the Pacific Hake, Merluccius productus off the Western U.S. coast. Mar. Biol. 44: 195–201.

    Google Scholar 

  • Davies, A. G., 1976. An assessment of the basis of mercury tolerance in Dunaliella tertiolecta. J. Mar. Biol. Assn. U.K. 56: 39–57.

    Google Scholar 

  • Davies-Colley, R. J., P. O. Nelson & K. H. Williamson, 1984. Copper and cadmium uptake by estuarine sedimentary phases. Envir. Sci. Technol. 18: 491–499.

    Google Scholar 

  • Diks, D. M. & H. E. Allen, 1983. Correlation of copper distribution in a freshwater-sediment system to bioavailability. Bull. Envir. Contam. Toxicol. 30: 37–43.

    Google Scholar 

  • Dragun, J. & D E Baker, 1982. Characterization of copper availability and corn seedling growth by a DTPA soil test. Soil Sci. Am. J. 46: 921–925.

    Google Scholar 

  • Engel, D. W. & B. A. Fowler, 1979. Factors influencing cadmium accumulation and its toxicity to marine organisms. Envir. Health Perspectives 28: 81–88.

    Google Scholar 

  • Engel, D. W. & W.G. Sunda, 1979. Toxicity of cupric ion to eggs of the spot Leiostomus xanthurus and the Atlantic silverside Menidia menidia. Mar. Biol. 50: 121–126.

    Google Scholar 

  • Evans, R. D. & D. C. Lasenby, 1983. Relationship between body-lead concentration of Mysis relicta and sediment-lead concentrations in Kotenay Lake, B. C. Can. J. Fish. Aquat. Sci. 40: 78–81.

    Google Scholar 

  • Fisher, N., 1985. Accumulation of metals by marine picoplankton. Mar. Biol. 87: 137–142.

    Google Scholar 

  • Fisher, N. S., M. Bohe & J.-L. Teyssie, 1984. Accumulation and toxicity of Cd, Zn, Ag, and Hg in four marine phytoplankters. Mar. Ecol. Progress Ser. 18: 201–213.

    Google Scholar 

  • Fisher, N. S. & D. Frodd, 1980. Heavy metals and marine diatoms: Influence of dissolved organic compounds on toxicity and selection for metal tolerance among four species. Mar. Biol. 59: 85–93.

    Google Scholar 

  • Fisher, N. S. & J.-L. Teyssie, 1986. Influence of food composition on the biokinetics and tissue distribution of zinc and americium in mussels. Mar. Ecol. Prog. Ser. 28: 197–207.

    Google Scholar 

  • Florence, T. M., B G. Lumsden & J. J. Fardy, 1983. Evaluation of some physico-chemical techniques for the determination of the fraction of dissolved copper toxic to the marine diatom Nitzshia closterium. Analytical Chimica ACTA 151: 281–295.

    Google Scholar 

  • Foster, P. L. & F. M. M. Morel, 1982. Reversal of cadmium toxicity in a diatom: An interaction between cadmium activity and iron. Limnol. Oceanogr. 27: 745–752.

    Google Scholar 

  • Fuller, C. C. & J. A. Davis, 1987. Processes and kinetics of Cd2+ sorption by a calcareous aquifer sand. Geochim. Cosmochim. ACTA 51: 1491–1502.

    Google Scholar 

  • Freedman, M. L., P. M. Cunningham, J. E. Schindler & M. J. Zimmerman, 1980. Effect of lead speciation on toxicity. Bull. Envir. Contam. Toxicol. 25: 389–393.

    Google Scholar 

  • Gaillard, J.-F., C. Jeandel, G. Michard, E. Nicolas & D. Renard, 1986. Interstitial waer chemistry of Villefranche bay sediments: Trace metal diagenesis. Mar. Chem. 18: 233–247.

    Google Scholar 

  • George, S. G., B. J. S. Pirie, A. R. Cheyene, T. L. Coombs & P. T. Grant, 1978. Detoxification of metals by marine bivalves: An ultrastructural study of the compartmentation of copper and zin in the oyster Ostrea edulis. Mar. Biol. 45: 147–156.

    Google Scholar 

  • Giblin, A. E., G. W. Luther III & A. Valiela, 1986. Trace metal solubility in salt marsh sediments contaminated with sewage sludge. Estuarine, coastal Shelf Sci. 23: 477–498.

    Google Scholar 

  • Gough, L. P., J. M. McNeal & R. C. Severson, 1980. Predicting native plant copper, iron, manganese and zinc levels using DTPA and EDTA soil extractants, Northern Great Plains. Soil Sci. Am. J., 44: 1030–1035.

    Google Scholar 

  • Guy, R. D., C. L. Chakrabarti & D. C. McBain, 1977. An evaluation of extraction techniques for the fractionation of copper and lead in model sediment systems. Wat. Res. 12: 21–24.

    Google Scholar 

  • Hall, T. M., 1982. Free ionic nickel accumulation and localization in the freshwater zooplankter, Daphnia magna. Limnol. Oceanogr. 27: 718–727.

    Google Scholar 

  • Harvey, R. W. & S. N. Luoma, 1985a. Separation of solute and particulate vectors of hravy metal uptake in controlled suspension-feeding experiments with Macoma balthica. Hydrobiologia 121: 97–102.

    Google Scholar 

  • Harvey, R. W. & S. N. Luoma, 1985b. Effect of adherent bacteria and bacterial extracellular polyimers upon assimilation by Macoma balthica of sediment-bound Cd, Zn and Ag. Mar. Ecol. Progress Ser. 22: 281–289.

    Google Scholar 

  • Honeyman, B. D., 1984. Cation and anion adsorption at the oxide/solution interface in systems containing mixtures of adsorbents. An investigation of the concept of adsorptive additivity. PhD Thesis, Stanford University, Stanford, CA.

    Google Scholar 

  • Honeyman, B. D. & J. O. Leckie, 1986. Macroscopic partitioning coefficients for metal ion adsorption. P. 162–190. In. J. A. Davis and K. F. Hayes (eds) Geochemical Processes at Mineral Surfaces, Am. Chem. Symp. Ser. 23, Am. Chem. Soc., Washington, D.C.

    Google Scholar 

  • Huntsman, S. A. & W. G. Sunda, 1980. The role of trace metals in regulating phytoplankton growth. In Morris, I (ed.) The Physiological Ecology of Phytoplankton, Blackwell Scientific Publications, London: 285–328.

    Google Scholar 

  • Jackson, G. A. & J. J. Morgan, 1978. Trace metal-chelator interactions and phytoplankton growth in seawater media: Theoretical analysis and comparison with reported observations. Limnol. Oceanogr. 23: 268–282.

    Google Scholar 

  • Jenne, E. A., 1968. Controls on Mn, Fe, Co, Ni, Cu, and Zn concentrations in soils and water: the significant role of hydrous Mn and Fe oxides. In Gould, R. F. (ed.) Trace Inorganics in water. Am. Chem. So., Washington, D.C.: 337–387.

    Google Scholar 

  • Jenne, E. A., 1977. Trace element sorption by sediments and soils — sites and processes. W. Chappel & K. Peterson (eds), Symposium on Molybdenum in the Environment. Dekker, New York: 425–553.

    Google Scholar 

  • Jenne, E. A., D. M. DiToro, H. E. Allen & C. S. Zarba, 1986. An activity-based model for developing sediment criteria for metals: Part 1. A new approach. In J. N. Lester, R. Perry & R. M. Sterritt (eds) Proceedings of the International Conf. Chemicals in the Environment, Salper, London: 560–568.

  • Johansson, C., D. J. Cain & S. N. Luoma, 1986. Variability in fractionation of Cu, Ag, and Z, among cytosolic proteins in the bivalve Macoma balthica. Mar. Ecol. Progress Ser., 28: 87–97.

    Google Scholar 

  • Kheboian, C. & C. F. Bauer, 1987. Accuracy of selective extraction procedures for metal speciation in model aquatic sediments. Anal. Chem. 59: 1417–1423.

    Google Scholar 

  • Korcak, R. F. & D. S. Fanning, 1978. Extractability of cadmium, copper, nickel and zinc by double acid versus DTPA and plant content at excessive soil levels. J. Envir. Quality 7: 506–512.

    Google Scholar 

  • Krantzberg, G., 1987. A study of the role of biotic and abiotic factors in modifying metal accumulation by Chironmuss (Diptera: Chironomidae). Ph.D. thesis, University of Toronto, Ontario, Canada. 228 pp.

    Google Scholar 

  • Kuwabara, J. S., J. A. Davis & C. C. Y. Chang, 1986. Algal growth response to particle-bound orthophosphate and zinc. Limnol. Oceanogr. 31: 503–511.

    Google Scholar 

  • Langston, W. J., 1980. Arsenic in U.K. estuarine sediments and its availability to benthic organisms. J. Mar. Biol. Assn. U.K. 60: 869–881.

    Google Scholar 

  • Langston, W. J., 1982. The distribution of mercury in British estuarine sediments and its availability to deposit feeding bivalves. J. Mar. Biol. Assn. U.K. 62: 667–684.

    Google Scholar 

  • Langston, W. J., 1985. Assessment of the distribution and availability of arsenic and mercury in estuaries. P 131–146 in: Wilson, J. G. and W. Halcrow (eds.) Estuarine Management and Quality Assessment, Plenum Press. New York.

    Google Scholar 

  • LeBlanc, G. A., J. D. Mastone, A. P. Paradice, B. F. Wilson, H. B. Lockhart, Jr., & K. A. Robillard, 1984. The influence of speciation on the toxicity of silver to fathead minnow (Pimephales promelas). Envir. Toxicol. Chem. 3: 37–46.

    Google Scholar 

  • Lindsay, W. L. and W. A. Norvell, 1978. Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Sci. Am. J. 42: 421–428.

    Google Scholar 

  • Loring, D. H., 1981. Potential bioavailability of metals in eastern Canadian estuarine and coastal sediments. Rapp. P.-v. Reun. Cons. int. Explor. Mer, 181: 93–101.

    Google Scholar 

  • Loring, D. H. & F. Prosi, 1986. Cadmium and lead cycling between water, sediment, and biota in an artificially contaminated mud flat on Borkum (F R G ). Water Sci. Technol. 18: 131–139.

    Google Scholar 

  • Luoma, S. N., 1977. Dynamics of biologically available mercury in a small estuary. Estuarine Coastal Mar. Sci. 5: 643–652.

    Google Scholar 

  • Luoma, S. N., 1983. Bioavailability of trace metals to aquatic organisms — A review. Sci. Total Envir. 28: 1–22.

    Google Scholar 

  • Luoma, S. N., 1986. A comparison of two methods for determining copper partitioning in oxidized sediments. Mar. Chem. 20: 45–59.

    Google Scholar 

  • Luoma, S. N. & G. W. Bryan, 1978. Factors controlling availability of sediment-bound lead to the estuarine bivalve Scrobicularia plana. J. Mar. Biol. Assn. U.K. 58: 793–802.

    Google Scholar 

  • Luoma, S. N. and G. W. Bryan, 1982. A statistical study of environmental factors controlling concentrations of heavy metals in the burrowing bivalve Scrobicularia plana and the polychaete Nereis diversicolor. Estuarine, Coastal and Shelf Sci. 15: 95–108.

    Google Scholar 

  • Luoma, S. N., D. J. Cain & C. Johansson, 1985. Temporal fluctuations of silver, copper and zinc in the bivalve Macoma balthica at five stations in south San Francisco Bay. Hydrobiologia 129: 109–120.

    Google Scholar 

  • Luoma, S. N. & J. A. Davis, 1983. Requirements for modeling trace metal partitioning in oxidized estuarine sediments. Mar. Chem. 12: 159–181.

    Google Scholar 

  • Luoma, S. N. & E. A. Jenne, 1976a. Estimating bioavailability of sediment-bound trace metals with chemical extractants. In D. D. Hemphill (ed.) Trace Substances in Environm. Health — X., University of Missouri, Columbia: 343–351.

    Google Scholar 

  • Luoma, S. N. & E. A. Jenne, 1976b. Factors effecting the availability of sediment-bound cadmium to the estuarine deposit feeding clam, Macoma balthica. In E. Cushing (ed.) Radioecology and Energy Resources, Dowden, Hutchinson and Ross, Inc., Stroudsnerg: 283–291.

    Google Scholar 

  • Luoma, S. N. & E. A. Jenne, 1977. The availability of sediment-bound cobalt, silver, and zinc to a deposit-feeding clam. In Wildung R. E. & H. Drucker (eds) Biological Implications of Metals in the Environment. NTIS CONF-750920, Springfield, VA: 213–230.

  • Luoma, S. N. & D. J. H. Philips, 1988. Spatial distribution, temporal variation and impacts of trace elements in San Francisco Bay. Mar. Poll. Bull. 19: 413–425.

    Google Scholar 

  • Marquenie, J. M., 1985. Bioavailability of micropollutants. Sci. Technol. Letters 6: 351–358.

    Google Scholar 

  • Mason, A. Z., K. D. Jenkins & P. A. Sullivan, 1988. Mechanisms of trace metal accumulation in the polychaete Neanthes arenaceodentata. J. Mar. Biol. Assn. U.K. v. 68 (in press).

  • McKnight, D., 1981. Chemical and biological processes controlling the response of a freshwater ecosystem to copper stress: A field study of the CuSO4 treatment of Mill Pond Reservoir, Burlington, Massachusetts. Limnol. Oceanogr. 26: 518–531.

    Google Scholar 

  • McKnight, D. M. & F. M. M. Morel, 1980. Copper complexation by siderophores from filamentous blue-green algae. Limnol. Oceanogr. 25: 62–71.

    Google Scholar 

  • Morel, F. M. M. and R. J. M. Hudson, 1985. The geobiological cycle of trace elements in aquatic systems. Redfield revisited. In Stumm W. (ed.) Chemical Processes in Lakes, John Wiley and Sons, New York: 251–281.

    Google Scholar 

  • Morel, F. M. M., R. E. McDuff & J. J. Morgan, 1973. Interactions and chemostasis in aquatic chemical systems: Role of pH, pe, solubility and complexation. In Singer, P. C. (ed.) Trace metals and Metal Organic Interactions in Natural Waters, Ann Arbor Science Publications. Ann. Arbor: 157–200.

    Google Scholar 

  • Neff, , J. W., R. S. Foster & J. F. Slowey, 1978. Availability of sediment-adsorbed heavy metals to benthos with particular emphasis on deposit-feeding infauna. Army Corps of Engineers Technical Report D-78-42, 78 pp.

  • Newman, M. C. & A. W. McIntosh, 1983. Slow accumulation of lead from contaminated food sources by the freshwater gastropods, Physa integra and Campeloma decisum. Arch. Envir. Contain. Toxicol. 12: 685–692.

    Google Scholar 

  • Norvell, W. A. & W. L. Lindsay, 1972. Reaction of DTPA chelates of iron, zinc, copper, and manganese with soils. Soil Sci. Soc. Am. Proc. 36: 778–783.

    Google Scholar 

  • Oakden, J. M., J. S. Oliver & A. R. Flegal, 1984. EDTA chelation and zinc antagonism with cadmium in sediment: effects on the behaviour and mortality of two infaunal amphipods. Mar. Biol. 84: 125–130.

    Google Scholar 

  • Oakley, S. M., P. O. Nelson & K. J. Williamson, 1981. Model of trace-metal partitioning in marine sediments. Envir. Sci. Technol. 15: 474–480.

    Google Scholar 

  • Owen, G., 1966. Digestion. In Wilbur, K. M. & C M Yonge (eds), Physiology of Mollusca, Vol II. Academic Press, New York: 53–96.

    Google Scholar 

  • Pagenkopf, G.K., 1983. Gill surface interaction model for trace-metal toxicity to fishes: Role of complexation, pH, and water hardness. Envir. Sci. Technol. 17: 342–347.

    Google Scholar 

  • Packer, D. M., M. P. Ireland, & R. J. Wootton, 1980. Cadmium, copper, lead, zinc and manganese in the polychaete Arenicola marina from sediments around the coast of Wales. Envir. Poll. (Series A) 22: 309–321.

    Google Scholar 

  • Pecon, J. & E. N. Powell, 1981. Effect of the amino acid histidine on the uptake of cadmium from the digestive system of the Blue Crab, Callinectes sapidus. Bull. Envir. Contain. Toxicol. 27: 34–41.

    Google Scholar 

  • Pickering, W. F., 1981. Selective chemical extraction of soil components and bound metal species. CRC Critical Reviews Anal. Chem. 12: 233–266.

    Google Scholar 

  • Pesch, C. E. & D. Morgan, 1978. Influence of sediment in copper toxicity tests with the polychaete Neathes arenaceodentata. Wat. Res. 12: 747–751.

    Google Scholar 

  • Ray, S., D. W. McLeese & M. R. Peterson, 1981. Accumulation of copper, zinc, cadmium and lead from two contaminated sediments by three marine invertebrates — a laboratory study. Bull. Envir. Contain. Toxicol. 26: 315–322.

    Google Scholar 

  • Rendel, P. S., G. E. Batley & A. J. Cameron, 1980. Adsorption as a control of metal concentrations in sediments extracts. Envir. Sci. Technol. 14: 314–318.

    Google Scholar 

  • Reuter, J. G., Jr. & F. M. M. Morel, 1981. The interaction between zinc deficiency and copper toxicity as it affects the silicic acid uptake mechanism in Thalassiosira pseudonana. Limnol. Oceanogr. 26: 67–73.

    Google Scholar 

  • Ritz, D. A., R. Swain & N. G. Elliot, 1982. Use of the mussel Mytilus edulis in monitoring heavy metal levels in seawater. Aus. J. Mar. Freshwat. Res. 33: 491–506.

    Google Scholar 

  • Roesijadi, G., 1981. The significance of low molecular weight, metallothionein-like proteins in marine invertebrates: current status. Mar. Envir. Res. 4: 167–179.

    Google Scholar 

  • Sloof, W., J. A. M. van Oers & D. DeZwart, 1986. Margins of uncertainty in ecotoxicological hazard assessment. Envir. Toxicol. Chem; 5: 841–852.

    Google Scholar 

  • Strong, C. R. & S. N. Luoma, 1981. Variations in correlation of body size with concentrations of Cu and Ag in the bivalve Macoma balthica. Can. J. Fish. Aquat. Sci. 38: 1059–1064.

    Google Scholar 

  • Stumm, W. & P. A. Brauner, 1975. Chemical speciation. In Riley, J. P. & G. Skirrow (eds), Chemical Oceanography, Vol I 2nd Ed, Academic Press, London: 173–240.

    Google Scholar 

  • Stumm, W. & J. J. Morgan, 1981. Aquatic Chemistry. 2nd Ed. John Wiley & Sons, New York, 780 pp.

    Google Scholar 

  • Sunda, W. G., 1987. Neritic-oceanic trend in trace-metal toxicity to phytoplankton communities. In Capuzzo, J. M. & Dana R. Kester (eds), Oceanic Processes in marine Pollution — Vol I, Biological Processes and Wastes in the Ocean, Robert E. Krieger Publ. Co, Malabar, FL: 19–31.

    Google Scholar 

  • Sunda, W. G., D. W. Engel & R. M. Thuotte, 1978. Effect of chemical speciation on toxicity of cadmium to grass shrimp, Palaemonetes pugio: Importance of free admium ion. Envir. Sci. Technol. 12: 409–413.

    Google Scholar 

  • Sunda, W. G. & R. R. Guillard, 1976. The relationship between cupic ion activity and the toxicity of copper to phytoplankton. J. Mar. Res 34: 511–529.

    Google Scholar 

  • Sunda, W. G. & S. A. Huntsman, 1983. Effect of competitive interactions between manganese and copper on cellular manganese and growth in estuarine and oceanic species of the diatom Thalassiosira. Limnol. Oceanogr. 28: 924–934.

    Google Scholar 

  • Sunda, W. G. & J. A. M. Lewis, 1978. Effect of complexation by natural organic ligands on the toxicity of copper to a unicellular alga, Monochrysis lutheri. Limnol. Oceanogr. 23: 870–876.

    Google Scholar 

  • Swallow, K. C., J. C. Westall, D. M. McKnight, N. M. L. Morel & F. M. M. Morel, 1978. Potentiometric determination of copper complexation by phytoplankton exudates. Limnol. Oceanogr. 23: 538–542.

    Google Scholar 

  • Swartz, R. C., G. R. Ditsworth, D. W. Schults & J. O. Lamberson, 1985. Sediment toxicity to a marine infaunal amphipod: Cadmium and its interaction with sewage sludge. Mar. Envir. Res. 18: 133–153.

    Google Scholar 

  • Tessier, A., P. G. C. Campbell & M. Bisson, 1979. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51: 844–851.

    Google Scholar 

  • Tessier, A., P. G. C. Campbell, J. C. Auclair & M. Bisson, 1984. Relationships between the partitioning of trace metals in sediments and their accumulation in the tissues of the freshwater mollusc Elliptio complanata in a mining area. Can. J. Fish. Aquat. Sci. 41: 1463–1471.

    Google Scholar 

  • Tessier, A., F. Rapin & R. Carignan, 1985. Trace metals in oxic lake sediments: possible adsorption onto iron oxyhydroxides. Geochim. Cosmoschim. ACTA 49: 183–194.

    Google Scholar 

  • Vangenechten, J. H. D., S. R. Aston & S. W. Fowler, 1983. Uptake of americium-241 from two experimentally labelled deep-sea sediments by three benthic species: a bivalve mollusc, a polychaete and an isopod. Mar. Ecol. Progress. Ser. 13: 219–228.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luoma, S.N. Can we determine the biological availability of sediment-bound trace elements?. Hydrobiologia 176, 379–396 (1989). https://doi.org/10.1007/BF00026572

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00026572

Key words

Navigation