Skip to main content
Log in

The genetics of tolerance to high mineral concentrations in the tribe Triticeae — a review and update

  • Published:
Euphytica Aims and scope Submit manuscript

Summary

Soil mineral stresses are increasingly becoming growth-limiting factors for crop plants in many parts of the world. Unfortunately, most of the stresses are often not easily correctable by conventional agricultural practices. Recently it has become apparent that some crop plants and their wild (‘alien’) relatives possess adequate genotypic variation in tolerance to some of these mineral stresses, which could be utilized to improve the level of tolerance of the cultivated species. The objective of this paper is to review, summarise and update the current published information on the genetics of mineral stress tolerance in the tribe Triticeae, and also assess the implications for wheat improvement.

Sources of tolerance to aluminium, excess manganese, boron and copper are identified, and the chromosomal locations of factors conferring the tolerance are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adriano, D.C., A.L., Page, A.A., Elseewi, A.C., Chang & I., Straughan, 1980. Sources of boron in the terrestrial environment. J. Environ. Qual. 9: 333–344.

    Google Scholar 

  • Aldrich, D.G., J.R., Buchanan & G.R., Bradford, 1955. Effect of soil acidification on vegetative growth and leaf composition of lemon trees in pot cultures. Soil Sci. 79: 427–439.

    Google Scholar 

  • Allaway, W.H., 1968. Agronomic controls over the environmental cycling of trace elements. Adv. Agron. 20: 235–274.

    Google Scholar 

  • Aniol, A., 1983. Introduction of aluminium tolerance into aluminium sensitive wheat cultivars. Z. Pflanzenzuechtg. 93: 331–339.

    Google Scholar 

  • Aniol, A., 1986. Inheritance of aluminium tolerance in triticale and parental species. Proc. Int. Triticale Symp. Sydney, Aust. Inst. of Agric. Sci. (Publ.) 1986.

  • Aniol, A. & P.J., Gustafson, 1984. Chromosome location of genes controlling aluminium tolerance in wheat, rye and triticale. Can. J. Genet. Cytol. 26: 701–705.

    Google Scholar 

  • Aniol, A., R.D., Hill & E.N., Larter, 1980. Aluminium tolerance of spring rye inbred lines. Crop Science 20: 205–208.

    Google Scholar 

  • Barber, W.D., 1969. PhD Dissertation. The Pennsylvania State University, Univ. Park, USA (Cited in Devine, 1982).

  • Berzonsky, W.A. & G., Kimber, 1986. Tolerance of Triticum species to aluminium. Plant Breeding 97: 275–278.

    Google Scholar 

  • Blum, A., 1988. Plant breeding for stress environments. CRC, Press Inc. Boca Raton, Florida, USA.

    Google Scholar 

  • Brown, J.C., J.E., Ambler, R.L., Chaney & C.D., Foy, 1972. Differential responses of plant genotypes to micronutrients. In: C.R., Dinauer (Ed.), Micronutrients in Agriculture. Soil Sci. Soc. Amer. Inc., Madison, Wisconsin, USA.

    Google Scholar 

  • Clark, R.B., 1982. Plant response to mineral element toxicity and deficiency. In: M.N., Christiansen & C.F., Lewis (Ed.), Breeding plants for less favourable environments. p 71–142. Wiley and Son, New York.

    Google Scholar 

  • Crapper-McLachlan, D.R. & U.de, Boni, 1980. Aluminium in human brain disease, an overview. Neurotoxicology 1: 3.

    Google Scholar 

  • Delas, J., 1963. The toxicity of copper accumulating in soils. Agrochimica 7: 258–288.

    Google Scholar 

  • Devine, T.E., 1982. Genetic fitting of crops to problem soils. In: M.N., Christiansen & C.F., Lewis (Eds.), Breeding plants for less favourable environments. p 143–173. John Wiley and Son, New York.

    Google Scholar 

  • Duke, J.A., 1982. Plant germplasm resources for breeding of crops adapted to marginal environments. In: M.N., Christiansen & C.F., Lewis (Eds.), Breeding plants for less favourable environments. p 407. John Wiley and Son, New York.

    Google Scholar 

  • Eenink, A.H. & F., Garretsen, 1977. Inheritance of insensitivity of lettuce to a surplus of exchangeable manganese in steam-sterilized soils. Euphytica 26: 47–53.

    Google Scholar 

  • Evans, C.E. & E.J., Kamprath, 1970. Lime response as related to percent aluminium saturation, solution aluminium and organic matter content. Soil Sci. Soc. Amer. Proc. 34: 893–896.

    Google Scholar 

  • Forster, B.P., J., Gorham & M., Taeb, 1988a. The use of genetic stocks in understanding and improving the salt tolerance of wheat. In: M.L., Jorna & L.A.J., Slootmaker (Eds.), Cereal breeding related to integrated cereal production. Proc. of the Conf. of Cereal section of EUCARPIA. p 87–91. Pudoc, Wageningen.

    Google Scholar 

  • Forster, B.P., T.E., Miller & C.N., Law, 1988b. Salt tolerance of two wheat Agropyron junceum disomic addition lines. Genome 30: 559–564.

    Google Scholar 

  • Forster, B.P., M.S., Phillip, T.E., Miller, E., Baird & W., Powell, 1990. Chromosome location of genes controlling tolerance to salt (NaCl) and vigour in Hordeum vulgare and H. chilense. Heredity 65: 99–107.

    Google Scholar 

  • Foy, C.D., 1973. Manganese and plants. In: Manganese, p 51–76. Washington DC, Natl. Acad. Sci., Natl. Res. Council.

    Google Scholar 

  • Foy, C.D., 1977. General principles involved in screening plants for aluminium and manganese tolerance. p 255–267. In: M.J., Wright (Ed.), Proc. Workshop, NAL, Beltsville, MD. Nov. 22–23, 1976. AID. Washington DC, USA.

    Google Scholar 

  • Foy, C.D., G.R., Burns, J.C., Brown & A.L., Fleming, 1965. Differential aluminium tolerance of two wheat varieties associated with plant induced pH changes around their roots. Soil Sci. Soc. Amer. Proc. 29: 64–67.

    Google Scholar 

  • Foy, C.D., A.L., Fleming & J.W., Shwartz, 1973. Opposite aluminium and manganese tolerances of two wheat varieties. Agron. J. 65: 123–126.

    Google Scholar 

  • Foy, C.D., R.L., Chaney & M.C., White, 1978. The physiology of metal toxicity in plants. Ann. Rev. Plant Physiol. 29: 511–566.

    Google Scholar 

  • Gartside, D.W. & T., McNeilly, 1974. The potential for evolution of heavy metal tolerance in plants. II. Copper tolerance in normal populations of different plant species. Heredity 32: 335–348.

    Google Scholar 

  • Gerloff, G.C. & W.H., Gabelman, 1983. Genetic basis of inorganic plant nutrition. In: A., Lauchli & R.L., Bieleski (Eds.), Inorganic Plant Nutrition, p 453–476. Springer Verlag. Berlin. New York. Tokyo.

    Google Scholar 

  • Gould, J. & K., Giller, 1990. A green solution to the green revolution. New Scientist 25: 57.

    Google Scholar 

  • Graham, R.D., 1978. Nutrient efficiency objectives in cereal breeding, p 165–170. In: A.R. Ferguson, R.L. Bieleski & I.B. Ferguson (Eds.), Plant Nutrition. Proc. 8th Int. Colloq. Plant Anal. Fert. Prob. Auckland, New Zealand.

  • Greaves, J.E. & A., Anderson, 1935. Influence of soil and variety on the copper content of grains. J. Nutrition 11: 11–18.

    Google Scholar 

  • Gregory, F.G. & F., Crowther, 1928. A physiological study of varietal difference in plants. Part I. A study of comparative yields of barley varieties with different manurings. Ann. Bot. 42: 757–770.

    Google Scholar 

  • Hara, T. & Y., Sonoda, 1979. Comparison of the toxicity of heavy metals to cabbage growth. Plant and Soil 51: 127–133.

    Google Scholar 

  • Hettel, G.P., 1989. Wheat production in South America Colossus: The gains from 20 years of Brazilian/CIMMYT collaboration. Mexico. D.F. CIMMYT Today No. 18.

  • Hodgson, J.F., 1963. Chemistry of the micronutrient elements in soil. Adv. Agron. 15: 119–159.

    Google Scholar 

  • Jenne, E.A., 1968. Controls on Mn, Fe, Co, Ni, Cu and Zn concentrations in soils and water. The significant role of hydrous Mn and Fe oxides. Adv. Chem. 73: 337–387.

    Google Scholar 

  • Kerridge, P.C. & W.E., Kronstad, 1968. Evidence of genetic resistance to aluminium toxicity in wheat. Agron. J. 60: 710–711.

    Google Scholar 

  • King, S.W., J., Savory & M.R., Willis, 1981. The clinical biochemistry of aluminium. CRC Crit. Rev. Clin. Lab. Sci. 14: 1.

    Google Scholar 

  • Konzak, C.F., E., Polle & J.A., Kittrick, 1977. Screening several crops for aluminium tolerance, p 311–327. In: M.J., Wright (Ed.). Plant Adaptation to mineral stress in problem soils. Proc. Workshop, NAL, Beltsville, MD. Nov. 22–23. 1976. AID. Washington DC, USA.

    Google Scholar 

  • Law, C.N., A.J., Worland & B., Giorgi, 1976. The genetical control of ear emergence time by chromosome 5A and 5B of wheat. Heredity 36: 49–58.

    Google Scholar 

  • Lopez-benitez, A., 1977. Influence of aluminium toxicity in intergeneric crosses of wheat and rye. PhD Thesis, Oregon State University, Corvallis.

  • Macfie, S.M., G., Taylor, K., Briggs & J., Haddinot, 1989. Differential tolerance of manganese among cultivars of Triticum aestivum. Can. J. Bot. 67: 1305–1308.

    Google Scholar 

  • Macnair, M.R., 1989. The genetics of metal tolerance in natural populations. In: J. Shaw (Ed.), Heavy metal tolerance in plants: Evolutionary aspects. CRC Press.

  • Manyowa, N.M., 1989. The genetics of aluminium, excess boron, copper and manganese stress tolerance in the tribe Triticeae and its implications for wheat improvement. PhD Thesis, Cambridge University, Cambridge, England.

  • Manyowa, N.M., T.E. Miller & B.P. Forster, 1988. Alien species as sources for aluminium tolerance genes for wheat (Triticum aestivum). In: T.E. Miller & R.M.D. Koebner (Eds.), Proc. 7th Int. Wheat Genet. Symp. p 851–857. Cambridge, England.

  • Marschner, H., 1983. General introduction to the mineral nutrition of plants. In: A., Lauchli & R.L., Bieleski (Eds.), Inorganic plant nutrition. New Series Vol. 15A: p 5–60. Springer Verlag. New York.

    Google Scholar 

  • Martini, J.A., R.A., Kochhann, O.J., Siqueira & C.M., Borkert, 1974. Response of soybeans to liming as related to soil acidity, Al and Mn toxicities, and P in some oxisols of Brazil. Soil Sci. Soc. Amer. Proc. 38: 616–620.

    Google Scholar 

  • Mengel, K. & E.A. Kirkby, 1978. Principles of plant nutrition. International Potash Institute.

  • Moers, C.D., 1922. Varieties of corn and their adaptability to different soils. Univ. Tenn. Agric. Exp. Sta. Bull. 126.

  • Moody, D.B., A.J. Rathjen, B. Cartwright, J.G. Paull & J. Lewis, 1988. Genetic diversity and geographical distribution of tolerance to high levels of soil boron. p 859–865. In: T.E. Miller & R.M.D. Koebner (Eds.), 7th Int. Wheat Genet. Symp. Cambridge, England.

  • Mugwira, L.M., S.M., Elgawhary & K.I., Patel, 1976. Differential tolerance of triticale, wheat, rye and barley to aluminium in nutrient solution. Agron. J. 68: 782–787.

    Google Scholar 

  • Mugwira, L.M., M., Floyd & S.U., Patel, 1981. Tolerances of triticale lines to manganese in soil and nutrient solution. Agron. J. 73: 319–322.

    Google Scholar 

  • Musa, G.L.C. & K., Munyinda, 1986. Differential aluminium tolerance of wheat and triticale in nutrient solution. Cereal Res. Comm. 14: 237–244.

    Google Scholar 

  • Naismith, R.W., M.W., Johnson & W.I., Thomas, 1974. Genetic control of relative calcium, phosphorus and manganese accumulation on chromosome 9 in maize. Crop Science 14: 845–849.

    Google Scholar 

  • Neary, D.G., G., Schneider & D.P., White, 1975. Boron toxicity in Red Pine following municipal waste water irrigation. Soil Sci. Soc. Amer. Proc. 39: 981–982.

    Google Scholar 

  • Neenan, M., 1960. The effects of soil acidity on the growth of cereals, with particular reference to the differential reaction of varieties thereto. Plant and Soil 12: 324–328.

    Google Scholar 

  • Novick, R.P. & C., Roth, 1968. Plasmid-linked resistance to inorganic salts in Staphylococcus aureus. J. Bacteriology 95: 1335–1342.

    Google Scholar 

  • Ojima, K. & K., Ohira, 1983. Characterization of aluminium and manganese tolerant cell lines selected from carrot cell cultuvars. Plant and Cell Physiol. 24: 789–797.

    Google Scholar 

  • Orzech, K.A. & J.J., Burke, 1988. Heat shock and the protection against metal toxicity in wheat leaves. Plant, Cell and Environment 11: 711–714.

    Google Scholar 

  • Paull, J.G., A.J. Rathjen & B. Cartwright, 1988a. Genetic control of tolerance to high concentrations of boron in wheat, p 871–877. In: T.E. Miller & R.M.D. Koebner (Eds.), Proc. 7th Int. Wheat Genet. Symp. Cambridge, England.

  • Paull, J.G., B., Cartwright & A.J., Rathjen, 1988b. Responses of wheat and barley genotypes to toxic levels of soil boron. Euphytica 39: 137–144.

    Google Scholar 

  • Polle, E., C.F., Konzak & J.A., Kittrick, 1978. Visual detection of aluminium tolerance levels in wheat by haematoxylin staining. Crop Sci. 18: 823–827.

    Google Scholar 

  • Prestes, A.M., C.F., Konzak & J.W., Hendrix, 1975. An improved seedling culture method for screening wheat for tolerance to toxic levels of aluminium. Agron. Abstr. 67: 60.

    Google Scholar 

  • Reeve, E. & J.W., Shive, 1944. Potassium-boron and calcium-boron relationships in plant nutrition. Soil Sci. 57: 1–14.

    Google Scholar 

  • Reid, D.A., 1970. Genetic control of reaction to aluminium in winter barley. Barley Genetics II, 409–413. Proc. 2nd Int. Barley Genet. Symp. Washington State University Press, Pullman.

    Google Scholar 

  • Reid, D.A., 1976. Aluminium and manganese toxicities in the cereal grains. In: M.J. Wright (Ed.), Proc. of a Workshop on plant adaptation to mineral stress in problem soils. Beltsville, Maryland. No. 22-23, 1976. USA, p 55–64.

  • Reisenauer, H.M., L.M., Walsh & R.G., Hoeft, 1973. Testing soils for sulphur, boron, molybdenum, and chlorine. In: L.M., Walsh & J.D., Beaton (Eds.), Soil testing and plant analysis. Soil Sci. Soc. Amer. Inc. Madison, Wisconsin.

    Google Scholar 

  • Reuther, W. & P.F., Smith, 1954. Symposium: Minor elements in relation to soil factors. Toxic effects of accumulated copper in Florida soils. Soil Sci. Soc. Florida Proc. 14: 17–23.

    Google Scholar 

  • Roberts, D.W.A. & M.D., MacDonald, 1986. Role of chromosome 5A in wheat in control of some traits associated with cold hardiness of winter wheat. Can. J. Bot. 66: 658–662.

    Google Scholar 

  • Schuman, G.E., 1969. Boron tolerance of tall wheatgrass. Agron. J. 61: 445–447.

    Google Scholar 

  • Silva, A.R.da, 1976. Application of the genetic approach to wheat culture in Brazil, p 223–231. In: M.J., Wright (Ed.), Plant adaptation of mineral stress in problem soils. Cornell University Agric. Exp. Sta. Ithaca, New York.

    Google Scholar 

  • Slootmaker, L.A.J., 1974. Tolerance to high soil acidity in wheat-related species, rye and triticale. Euphytica 23: 505–513.

    Google Scholar 

  • Sopper, W.E. & L.T., Kardos, 1973. In: Recycling treated waste water and sludge through forest and cropland. p 271–294. Penn. State University Park, P.A. USA.

    Google Scholar 

  • Taeb, M., R.M.D. Koebner, B.P. Forster & C.N. Law, 1991. Adaptive effects of genes for vernalization and photoperiod requirement on salinity tolerance of wheat (T. aestivum L.), (In preparation).

  • Vlamis, J. & D.E., Williams, 1967. Manganese and silicon interactions in the Gramineae. Plant and Soil 28: 131–140.

    Google Scholar 

  • Wilcox, L.V., 1960. Boron injury in plants, USA Dept. Agric. Bull. 211: 7.

    Google Scholar 

  • Woolhouse, H.W., 1983. Toxicity and tolerance in the responses of plants to metals. In: O.L., Lange, P.S., Noble, C.B., Osmond & J., Ziegler (Eds.), Physiol. Plant Ecol. III. Ency. of Plant Physiol. New Series Vol. 12C. Springer Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  • Wu, L., Z., Huang & R.G., Burau, 1988. Selenium accumulation and selenium salt co-tolerance in five grass species. Crop Sci. 28: 517–522.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manyowa, N.M., Miller, T.E. The genetics of tolerance to high mineral concentrations in the tribe Triticeae — a review and update. Euphytica 57, 175–185 (1991). https://doi.org/10.1007/BF00023076

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00023076

Key words

Navigation