Skip to main content
Log in

Bacterioplankton in a small polyhumic lake with an anoxic hypolimnion

  • DOM as an energy source
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Bacterioplankton biomass and dark fixation of inorganic carbon were measured in the highly humic (water colour up to 550 mg Pt l−1) and acidic lake, Mekkojärvi. Strong thermal and chemical stratification developed in the water column early in spring and led rapidly to anoxia in the hypolimnion, which extended to less than 1.0 m from the surface. In the epilimnion only small bacteria were abundant. In the anoxic zone both the abundance and the mean size of bacteria were considerably higher than in the epilimnion. These differences are thought to be the result of different grazing pressure from zooplankton in the two zones. In late summer a high concentration of bacteriochlorophyll d in the upper hypolimnion indicated a high density of photosynthetic bacteria. Bacterial biomass was similar to that of phytoplankton in the epilimnion, but 23 times higher in the whole water column. In August, dark fixation of inorganic radiocarbon in the anaerobic zone was 51% of the total 14C-incorporation and the contribution of light fixation was only 5.4%. In the polyhumic Mekkojarvi, bacterioplankton was evidently a potentially significant carbon source for higher trophic levels, but bacterioplankton production could not be supported by phytoplankton alone. Allochthonous inputs of dissolved organic matter probably support most of the bacterial production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersson, I. B., 1983. Bacterioplankton in the acidified Lake Gårdsjön. Hydrobiologia 101: 59–64.

    Article  Google Scholar 

  • Andersson, A., U. Larsson & Å. Hagström, 1986. Size-selective grazing by a microflagellate on pelagic bacteria. Mar. Ecol. Prog. Ser. 33: 51–57.

    Google Scholar 

  • Arvola, L., 1981. Spectrophotometric determination of chlorophyll a and phaeopigments in ethanol extractions. Ann. hot. fenn. 18: 221–227.

    CAS  Google Scholar 

  • Arvola, L., 1983. Primary production and phytoplankton in two small, polyhumic forest lakes in southern Finland. Hydrobiologia 101: 105–110.

    Article  Google Scholar 

  • Arvola L. & M. Rask, 1984. Relations between phytoplankton and environmental factors in a small, spring-meromictic lake in Southern Finland. Aqua fenn. 14: 129–138.

    CAS  Google Scholar 

  • Bergstein, T., Y. Henis & B. Z. Cavari, 1979. Investigations on the photosynthetic sulfur bacterium Chlorobium phaeobacterioides causing seasonal blooms in Lake Kinneret. Can. J. Microbiol. 25: 999–1007.

    Article  PubMed  CAS  Google Scholar 

  • Bergström, I., A. Heinänen & K. Salonen, 1986. Comparison of acridine orange, acriflavine, and bisbenzimide stains for enumeration of bacteria in clear and humic waters. Appl. envir. Microbiol. 51: 664–667.

    Google Scholar 

  • Biebl, H. & N. Pfennig, 1979. Anaerobic CO2 uptake by phototrophic bacteria. A review. Arch. Hydrobiol. Beih. Ergebn. Limnol. 12: 48–58.

    Google Scholar 

  • Bjørnsen, P. K., 1986. Automatic determination of bacterioplankton biomass by image analysis. Appl. envir. Microbiol. 51: 1199–1204.

    Google Scholar 

  • Børsheim, K. Y., G. Bratbak & M. Heldal, 1990. Enumeration and biomass estimation of planktonic bacteria and viruses by transmission electron microscopy. Appl. envir. Microbiol. 56: 352–356.

    Google Scholar 

  • Bratbak, G., 1985. Bacterial biovolume and biomass estimations. Appl. envir. Microbiol. 49: 1488–1493.

    Google Scholar 

  • Brendelberger, H. & W. Geller, 1985. Variability of filter structures in eight Daphnia species: mesh sizes and filtering areas. J. Plankton Res. 7: 473–486.

    Google Scholar 

  • Burnison, B. K. & K. T. Perez, 1974. A simple method for the dry combustion of 14C-labeled materials. Ecology 55: 899–902.

    Article  Google Scholar 

  • Ducklow, H. W., D. A. Purdie, P. J. LeB Williams & J. M. Davies, 1986. Bacterioplankton: a sink for carbon in a coastal marine plankton community. Science 232: 865–867.

    CAS  PubMed  Google Scholar 

  • Eloranta, P., 1978. Light penetration in different types of lakes in Central Finland. Holarct. Ecol. 1: 362–366.

    Google Scholar 

  • Fenchel, T., 1982. Ecology of heterotrophic microflagellates. IV. Quantitative occurrence and importance as bacterial consumers. Mar. Ecol. Prog. Ser. 9: 35–42.

    Google Scholar 

  • Hansen, T. A., 1983. Electron donor metabolism in phototrophic bacteria. In J. G. Ormerod (ed.), The phototrophic bacteria: Anaerobic life in the light. Studies in Microbiology 4. Blackwell, Oxford: 76–95.

    Google Scholar 

  • Hessen, D. O., 1985a. Filtering structures and particle size selection in coexisting Cladocera. Oecologia (Berl.) 66: 368–372.

    Article  Google Scholar 

  • Hessen, D. O., 1985b. The relation between bacterial carbon and dissolved humic compounds in oligotrophic lakes. FEMS Microbiol. Ecol. 31: 215–223.

    Article  CAS  Google Scholar 

  • Hutchinson, G. E., 1957. A treatise on limnology, 1. J. Wiley & Sons, N.Y., 1015 pp.

    Google Scholar 

  • Jackson, T. A. & R. E. Hecky, 1980. Depression of primary production by humic matter in lake and reservoir waters of boreal forest zone. Can. J. Fish. aquat. Sci. 37: 2300–2317.

    Article  Google Scholar 

  • Johansson, J.-A., 1983. Seasonal development of bacterioplankton in two forest lakes in Central Sweden. Hydrobiologia 101: 71–88.

    Article  Google Scholar 

  • Jones, R. I. & L. Arvola, 1984. Light penetration and some related characteristics in small forest lakes in Southern Finland. Verb. int. Ver. Limnol. 22: 811–816.

    Google Scholar 

  • Kankaala, P., 1988. The relative importance of algae and bacteria as food for Daphnia longispina (Cladocera) in a polyhumic lake. Freshwat. Biol. 19: 285–296.

    Article  Google Scholar 

  • Koroleff, F., 1979. Meriveden yleisimmät kemialliset analyysimenetelmät. Meri 7: 47–49.

    Google Scholar 

  • Lawrence, J. R., R. C. Haynes & U. T. Hammer, 1978. Contribution of photosynthetic green sulphur bacteria to total primary production in a meromictic saline lake. Verb. int. Ver. Limnol. 20: 201–207.

    Google Scholar 

  • Mazumder, A. & M. D. Dickman, 1989. Factors affecting the spatial and temporal distribution of phototrophic sulfur bacteria. Arch. Hydrobiol. 116: 209–226.

    Google Scholar 

  • Murphy, J. & J. P. Riley, 1962. A modified single solution method for the determination of phosphate in natural waters. Analyt. chim. Acta 27: 31–36.

    Article  CAS  Google Scholar 

  • Nagata, T., 1986. Carbon and nitrogen content of natural planktonic bacteria. Appl. envir. Microbiol. 52: 28–32.

    Google Scholar 

  • Overbeck, J., 1979. Dark CO2 uptake — biochemical background and its relevance to in situ bacterial production. Arch. Hydrobiol. Beih. Ergebn. Limnol. 12: 68–47.

    Google Scholar 

  • Parkin, T. B. & T. D. Brock, 1980. Photosynthetic bacterial production in lakes: the effects of light intensity. Limnol. Oceanogr. 25: 711–718.

    Google Scholar 

  • Parkin, T. B. & T. D. Brock, 1981a. Photosynthetic bacterial production and carbon mineralization in a meromictic lake. Arch. Hydrobiol. 91: 366–382.

    CAS  Google Scholar 

  • Parkin, T. B. & T. D. Brock, 1981b. The role of phototrophic bacteria in the sulfur cycle of a meromictic lake. Limnol. Oceanogr. 26: 880–890.

    CAS  Google Scholar 

  • Peterson, B. J., J. E. Hobbie & J. F. Haney, 1978. Daphnia grazing on natural bacteria. Limnol. Oceanogr. 23: 1039–1044.

    Google Scholar 

  • Rask, M., A. Heinänen, K. Salonen, L. Arvola, I. Bergström, & M. Liukkonen, 1986. The limnology of a small, naturally acidic, highly humic forest lake. Arch. Hydrobiol. 106: 351–371.

    Google Scholar 

  • Riemann, B. & S. Bosselmann, 1984. Daphnia grazing on natural population of bacteria. Verb. int. Ver. Limnol. 22: 795–799.

    Google Scholar 

  • Riemann, B., P. Simonsen & L. Sondergaard, 1989. The carbon and chlorophyll content of phytoplankton from various nutrient regimes. J. Plankton Res. 11: 1037–1046.

    Google Scholar 

  • Rodina, A. G., 1969. Bacterial population of humified lakes. Mikrobiologiya 38: 531–537.

    CAS  Google Scholar 

  • Salonen, K., 1981a. The ecosystem of oligotrophic Lake Pääjärvi, 2. Bacterioplankton. Verb. int. Ver. Limnol. 21: 448–453.

    Google Scholar 

  • Salonen, K., 1981b. Rapid and precise determination of total inorganic carbon and some gases in aqueous solutions. Wat. Res. 15: 403–406.

    Article  CAS  Google Scholar 

  • Salonen, K. & T. Hammar, 1986. On the importance of dissolved organic matter in the nutrition of zooplankton in some lake waters. Oecologia (Berlin) 68: 246–253.

    Article  Google Scholar 

  • Salonen, K. & S. Jokinen, 1988. Flagellate grazing on bacteria in a small dystrophic lake. Hydrobiologia 161: 203–209.

    Article  Google Scholar 

  • Salonen, K. & A. Lehtovaara, 1992. Migrations of haemoglobin-rich Daphnia longispina in a small, steeply stratified, humic lake with an anoxic hypolimnion. Hydrobiologia 229: 271–288.

    Google Scholar 

  • Salonen, K., L. Arvola & M. Rask, 1984. Autumnal and vernal circulation of small forest lakes in Southern Finland. Verh. int. Ver. Limnol. 22: 103–107.

    Google Scholar 

  • Sanders, R. W. & K. G. Porter, 1986. Use of metabolic inhibitors to estimate protozooplankton grazing and bacterial production in a monomictic eutrophic lake with an anaerobic hypolimnion. Appl. envir. Microbiol. 52: 101–107.

    CAS  Google Scholar 

  • Sanders, R. W. & K. G. Porter, 1990. Bacterivorous flagellates as food resources for the freshwater crustacean zooplankter Daphnia ambigua. Limnol. Oceanogr. 35: 188–191.

    Google Scholar 

  • Sanders, R. W., K. G. Porter, S. J. Bennett & A. E. DeBiase, 1989. Seasonal patterns of bacterivory by flagellates, ciliates, rotifers and cladocerans in a freshwater planktonic community. Limnol. Oceanogr. 34: 673–687.

    Google Scholar 

  • Schindler, D. W., R. V. Schmidt & R. Reid, 1972. Acidification and bubbling as an alternative to filtration in determining phytoplankton production by the 14C method. J. Fish. Res. Bd Can. 29: 1627–1631.

    CAS  Google Scholar 

  • Servais, P., G. Billen & J. Vives-Rego, 1985. Rate of bacterial mortality in aquatic environments. Appl. envir. Microbiol. 49: 1448–1454.

    CAS  Google Scholar 

  • Sherr, E., 1989. Aquatic viruses: And now, small is plentiful. Nature, Lond. 340: 429–430.

    Article  CAS  Google Scholar 

  • Sieracki, M. E., L. W. Haas, D. A. Caron & E. J. Lessard, 1987. Effect of fixation on particle retention by microflagellates: underestimation of grazing rates. Mar. Ecol. Prog. Ser. 38: 251–258.

    Google Scholar 

  • Sorokin, Yu. I., 1965. On the trophic role of chemosynthesis and bacterial biosynthesis in water bodies. Mem. Ist. ital. Idrobiol. 18 (suppl.): 187–205.

    Google Scholar 

  • Sorokin, Yu. I., 1970. Interrelations between sulfur and carbon turnover in meromictic lakes. Arch. Hydrobiol. 66: 391–446.

    Google Scholar 

  • Sorokin, Yu. I. & H. Kadota, 1972. Techniques for the assessment of microbial production and decomposition in freshwaters. IBP Handbook 23. Blackwell, Oxford, 112 pp.

    Google Scholar 

  • Stanier, R. Y. & J. H. C. Smith, 1960. The chlorophylls of green bacteria. Biochim. Biophys. Acta 41: 478–484.

    Article  PubMed  CAS  Google Scholar 

  • Steenbergen, C. L. M., H. J. Korthals, 1982. Distribution of phototrophic organisms in the anaerobic and microaerobic strata of Lake Vechten (The Netherlands). Pigment analysis and role in primary production. Limmnol. Oceanogr. 27: 883–895.

    Article  CAS  Google Scholar 

  • Takahashi, M. & S. Ichimura, 1968. Vertical distribution and organic matter production of photosynthetic sulfur bacteria in Japanese lakes. Limnol. Oceanogr. 13: 644–655.

    Google Scholar 

  • Takahashi, M. & S. Ichimura, 1970. Photosynthetic properties and growth of photosynthetic sulfur bacteria in lakes. Limnol. Oceanogr. 15: 920–944.

    Google Scholar 

  • Tranvik, L., 1988. Availability of dissolved organic carbon for planktonic bacteria in oligotrophic lakes of differing humic content. Microb. Ecol. 16: 311–322.

    Article  CAS  Google Scholar 

  • Tranvik, L., 1989. Bacterioplankton growth, grazing mortality and quantitative relationship to primary production in a humic and a clearwater lake. J. Plankton Res. 11: 985–1000.

    Google Scholar 

  • Vollenweider, R. A., 1969. A manual on the methods for measuring primary production in aquatic environments. IBP Handbook 12. Blackwell, Oxford, 214 pp.

    Google Scholar 

  • Wood, E. D., F. A. J. Armstrong & F. A. Richards, 1967. cadmium-copper reduction to nitrite. J. Mar. Biol. Ass. U.K. 47: 23–31.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuuppo-Leinikki, P., Salonen, K. Bacterioplankton in a small polyhumic lake with an anoxic hypolimnion. Hydrobiologia 229, 159–168 (1992). https://doi.org/10.1007/BF00006998

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00006998

Key words

Navigation