Skip to main content
Log in

Flagellate grazing on bacteria in a small dystrophic lake

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Fluorescent beads were used to determine the grazing on bacteria by heterotrophic and mixotrophic flagellates in a highly humic (water colour 300–600 mg Pt l−1) small lake. In summer phagotrophic flagellates constituted about three quarters of the numbers of phytoplankton (including heterotrophic or mixotrophic flagellates) in the uppermost epilimnion. Due to their small size their respective contribution to the biomass was about one quarter. The most important phagotrophic species were Ochromonas sp., and Chromulina spp. which ingested 75–203% of their body carbon per day from bacteria.

In view of the abundance and biomass of phagotrophic and mixotrophic flagellates and their very high growth potential, they clearly play a significant role in the food chains of this lake. In addition to providing energy, bacteriovory also represents an important supply of inorganic and organic nutrients under nutrient limiting conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aaronson, S., 1974. The biology and ultrastructure of phagotrophy in Ochromonas danica (Chrysophyceae: Chrysomonadida). J. Gen. Microbiol. 83: 21–29.

    Google Scholar 

  • Aaronson, S. & H. Baker, 1959. Comparative biochemical study of two species of Ochromonas. J. Protozool. 6: 282–284.

    Google Scholar 

  • Andersen, P. & T. Fenchel, 1985. Bacteriovory by microheterotrophic flagellates in seawater samples. Limnol. Oceanogr. 30: 198–202.

    Google Scholar 

  • Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil & E. Thingstad, 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Progr. Ser. 10: 257–263.

    Google Scholar 

  • Bergström, I., A. Heinänen & K. Salonen, 1986. Comparison of acridine orange, acriflavine, and bisbenzimide stains for enumeration of bacteria in clear and humic waters. Appl. envir. Microbiol. 51: 664–667.

    Google Scholar 

  • Bird, D. F. & J. Kalff, 1987. Algal phagotrophy: Regulating factors and importance valative to photosynthesis in Donobryon (Chrysophyceae). Limnol. Oceanogr. 32: 277–284.

    Google Scholar 

  • Bjørnsen, P. K., 1986. Automatic determination of bacterioplankton biomass by image analysis. Appl. envir. Microbiol. 51: 1199–1204.

    Google Scholar 

  • Bratbak, G., 1985. Bacterial volume and biomass estimations. Appl. envir. Microbiol. 49: 1488–1493.

    Google Scholar 

  • Børsheim, K. Y. & G. Bratbak, 1987. Cell volume to cell carbon conversion factors for bacteriovorous Monas sp. enriched from seawater. Mar. Ecol. Prog. Ser. 36: 171–175.

    Google Scholar 

  • Cynar, F. J. & J. McN. Sieburth, 1986. Unambiguous detection and improved quantification of phagotrophy in apochlorotic nanoflagellates using fluorescent microspheres and concomitant phase contrast and epifluorescence microscopy. Mar. Ecol. Progr. Ser. 32: 61–70.

    Google Scholar 

  • Droop, M. R., 1953. Phagotrophy in Oxyrrhis marina Dujardin. Nature 172: 250–251.

    Google Scholar 

  • Dubowsky, N., 1974. Selectivity of ingestion and digestion in the chrysomonad flagellate Ochromonas malhamensis. J. Protozool. 21: 295–298.

    Google Scholar 

  • Estep, K. W., P. G. Davis, M. D. Keller & J. McN. Sieburth, 1986. How important are oceanic algal nanoflagellates in bacteriovory? Limnol. Oceanogr. 31: 646–650.

    Google Scholar 

  • Fenchel, T., 1982a. Ecology of heterotrophic microflagellates. I. Some important forms and their functional morphology. Mar. Ecol. Progr. Ser. 8: 211–223.

    Google Scholar 

  • Fenchel, T., 1982b. Ecology of heterotrophic microflagellates. II. Bioenergetics and growth. Mar. Ecol. Progr. Ser. 8: 225–231.

    Google Scholar 

  • Fenchel, T., 1982c. Ecology of heterotrophic microflagellates. III. Adaptations to heterogeneous environments. Mar. Ecol. Progr. Ser. 9: 25–33.

    Google Scholar 

  • Fenchel, T., 1982d. Ecology of heterotrophic microflagellates. IV. Quantitative occurrence and importance as bacterial consumers. Mar. Ecol. Progr. Ser. 9: 35–42.

    Google Scholar 

  • Fenchel, T., 1986. The ecology of heterotrophic microflagellates. Adv. Microbial Ecol. 9: 57–97.

    Google Scholar 

  • Fenchel, T. & B. J. Finlay,1983. Respiration rates in heterotrophic, free-living protozoa. Microb. Ecol. 9: 99–122.

    Google Scholar 

  • Goldman, J. C. & D. A. Caron, 1985. Experimental studies on an omnivorous microflagellate: implications for grazing and nutrient regeneration in the marine microbial food chain. Deep Sea Res. 32: 899–915.

    Google Scholar 

  • Heldal, M., S. Norland & O. Tumyr, 1985. X-ray microanalytic method for measurement of dry matter and elemental content of individual bacteria. Appl. envir. Microbiol. 50: 1251–1257.

    Google Scholar 

  • Ishida, Y. & B. Kimura, 1986. Photosynthetic phagotrophy of Chrysophyceae: evolutionary aspects. Microbiological Sciences 3: 132–135.

    Google Scholar 

  • Kimura, B. & Y. Ishida, 1985. Photophagotrophy in Uroglena americana. Chrysophyceae. Jap. J. Limnol. 46: 315–318.

    Google Scholar 

  • McManus, G. B. & J. A. Fuhrman, 1986. Bacteriovory in seawater studied with the use of inert fluorescent particles. Limnol. Oceanogr. 31: 420–426.

    Google Scholar 

  • Mueller, M., P. Röhlich & I. Toro, 1965. Studies on feeding and digestion in Protozoa. VII. Ingestion of polystyrene latex particles and its early effect on acid phosphatase in Paramecium multimicronucleatum and Tetrahymena pyriformis. J. Protozool. 12: 27–34.

    Google Scholar 

  • Norland, S., M. Heldal & O. Tumyr, 1987. On the relation between dry matter and volume of bacteria. Microb. Ecol. 13: 95–101.

    Google Scholar 

  • Porter, K. G., E. B. Sherr, B. F. Sherr, M. Pace & R. W. Sanders, 1985. Protozoa in planktonic food webs. J. Protozool. 32: 409–415.

    Google Scholar 

  • Ryhänen, R., 1968. Die Bedeutung der Humussubstanzen im Stoffhaushalt der Gewässer Finnlands. Mitt. int. Ver. Limnol. 14: 168–178.

    Google Scholar 

  • Salonen, K. & T. Hammar, 1986. On the importance of dissolved organic matter in the nutrition of zooplankton in some lake waters. Oecologia (Berl.) 68: 246–253.

    Google Scholar 

  • Schell, D. M., 1983. Carbon-13 and carbon-14 abundances in Alaskan aquatic organisms: Delayed production from peat in arctic food webs. Science 219: 1068–1071.

    Google Scholar 

  • Sherr, E. B. & B. F. Sherr, 1987. High rates of consumption of bacteria by pelagic ciliates. Nature 325: 710–711.

    Google Scholar 

  • Straskrabova, V. & J. Komarkova, 1979. Seasonal changes of bacterioplankton in a reservoir related to algae. I. Numbers and biomass. Int. Rev. ges. Hydrobiol. 64: 285–302.

    Google Scholar 

  • Wetzel, R. G., 1983. Limnology. Saunders College Publishing, Philadelphia. 753 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salonen, K., Jokinen, S. Flagellate grazing on bacteria in a small dystrophic lake. Hydrobiologia 161, 203–209 (1988). https://doi.org/10.1007/BF00044111

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00044111

Key words

Navigation