Skip to main content
Log in

Depth-based coding of MVD data for 3D video extension of H.264/AVC

  • 3DR Express
  • Published:
3D Research

Abstract

This paper describes a novel approach of using depth information for advanced coding of associated video data in Multiview Video plus Depth (MVD)-based 3D video systems. As a possible implementation of this conception, we describe two coding tools that have been developed for H.264/AVC based 3D Video Codec as response to Moving Picture Experts Group (MPEG) Call for Proposals (CfP). These tools are Depth-based Motion Vector Prediction (DMVP) and Backward View Synthesis Prediction (BVSP). Simulation results conducted under JCT-3V/MPEG 3DV Common Test Conditions show, that proposed in this paper tools reduce bit rate of coded video data by 15% of average delta bit rate reduction, which results in 13% of bit rate savings on total for the MVD data over the state-of-the-art MVC+D coding.

Moreover, presented in this paper conception of depth-based coding of video has been further developed by MPEG 3DV and JCT-3V and this work resulted in even higher compression efficiency, bringing about 20% of delta bit rate reduction on total for coded MVD data over the reference MVC+D coding. Considering significant gains, proposed in this paper coding approach can be beneficial for development of new 3D video coding standards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Shibata, J. Kim, D. M. Hoffman, and M. S. Banks (2011) The zone of comfort: predicting visual discomfort with stereo displays, Journal of Vision 11(8):11, 1–29.

    Article  Google Scholar 

  2. A. Smolic, K. Müller, P. Merkle, N. Atzpadin, C. Fehn, M. Müller, O. Schreer, R. Tanger, P. Kauff, T. Wiegand, T. Balogh, Z. Megyesi, and A. Barsi (2007) Multi-view video plus depth (MVD) format for advanced 3D video systems, Joint Video Team, document JVT-W100.

    Google Scholar 

  3. ITU-T Recommendation H.264 (2012) Advanced video coding for generic audiovisual services.

    Google Scholar 

  4. Call for proposals on 3D video coding technology (2011) MPEG document N12036. Available online: http://mpeg.chiariglione.org/working_documents/explorations/3dav/3dv-cfp.zip

    Google Scholar 

  5. Applications and Requirements on 3D Video Coding, MPEG document, Online version: http://mpeg.chiariglione.org/working_documents/explorations/3dav/applications&requirements.zip

  6. B. Bross, W.-J. Han, G. J. Sullivan, J.-R. Ohm, and T. Wiegand (ed.) (2012) High Efficiency Video Coding (HEVC) text specification draft 8, JCTVC document J1003.

  7. Report of Subjective Test Results from the Call for Proposals on 3D Video Coding, Online: http://mpeg.chiariglione.org/working_documents/explorations/3dav/3d-test-report.zip

  8. D. Rusanovskyy and M. M. Hannuksela (2011) Description of 3D video coding technology proposal by Nokia, MPEG document M22552.

    Google Scholar 

  9. H. Schwarz, C. Bartnik, S. Bosse, H. Brust, T. Hinz, H. Lakshman, D. Marpe, P. Merkle, K. Müller, H. Rhee, G. Tech, M. Winken, T, Wiegand (2011) Description of 3D Video Coding Technology Proposal by Fraunhofer HHI (HEVC compatible, configuration A), MPEG document m22571.

    Google Scholar 

  10. Online: http://phenix.int-evry.fr/jct3v/

  11. Y. Chen, M. M. Hannuksela, T. Suzuki, and S. Hattori, Overview of the MVC+D 3D video coding standard, Elsevier Journal of Visual Communication and Image Representation. (In press)

  12. MVC+D and 3D-AVC reference software: 3DV-ATM version 5.1r2, available online: http://mpeg3dv.research.nokia.com/svn/mpeg3dv/tags/3DVATMv5.1r2/

  13. M. M. Hannuksela, Y. Chen, and T. Suzuki (ed.) (2013) 3DAVC draft text 5, JCT-3V document JCT3V-C1002.

  14. G. Tech, K. Wegner, Y. Chen, and S. Yea (ed.) (2012) 3DHEVC test model 1, JCT-3V document A1005.

  15. G. Tech, K. Wegner, Y. Chen, and M. M. Hannuksela (ed.), (2012) MV-HEVC working draft 1, JCT-3V document A1004.

  16. C. Fehn (2004) Depth-image-based rendering (DIBR) compression and transmission for a new approach on 3DTV, Proc. SPIE Conf. Stereoscopic Displays and Virtual Reality Systems XI, 5291: 93–104.

    Article  Google Scholar 

  17. J. Zhang, M. M. Hannuksela, and H, Li (2010) Joint multiview video plus depth coding, Proc. IEEE ICIP, 2865–2868.

    Google Scholar 

  18. S. Yea and A. Vetro (2009) View synthesis prediction for multiview video coding, Signal Processing: Image Communication, 24(1–2): 89–100.

    Article  Google Scholar 

  19. D. Tian, P.-L. Lai, P. Lopez, and C. Gomila (2009) View synthesis techniques for 3D video, Proc. SPIE 7443, Applications of Digital Image Processing XXXII.

  20. W. Su, D. Rusanovskyy, L. Chen, M. Hannuksela (2011) CE1 — Low complexity block-based View Synthesis Prediction, MPEG document m24915, Geneva.

    Google Scholar 

  21. W. Su, D. Rusanovskyy, M. M. Hannuksela (2012) 3DVCE1. a: Block-based View Synthesis Prediction for 3DVATM, JCT-3V document A0107, Stockholm, Sweden.

    Google Scholar 

  22. J. Y. Lee, J. Lee, D.-S. Park (2012) CE5.a results on interview motion vector derivation using max disparity in skip and direct modes, JCT-3V document B0149, Shanghai, China.

    Google Scholar 

  23. C.-L. Wu, Y.-L. Chang, Y.-P. Tsai, S. Lei (2012) 3D-CE1.a: interview skip/direct mode with sub-partition scheme, JCT-3V document B0094, Shanghai, China.

    Google Scholar 

  24. J.-L. Lin, Y.-W. Chen, X. Guo, Y.-L. Chang, Y.-P. Tsai, Y.-W. Huang, S. Lei (2012) 3D-CE5.a related motion vector competition-based Skip/Direct mode with explicit signaling, MPEG document m24847, Geneva, Switzerland.

    Google Scholar 

  25. D. Rusanovskyy, M. M. Hannuksella (2013) CE1.a-related: Simplification of BVSP in 3DV-ATM, JCT-3V document C0169, Geneva, Switzerland.

    Google Scholar 

  26. J-L. Lin, Y-W. Chen, Y.-W Huang, S. Lei (2012) 3D-CE5.a related: Simplification on the disparity vector derivation for AVC-based 3D video coding, JCT-3V document A0045, Stockholm, Sweden.

    Google Scholar 

  27. W. Su, D. Rusanovskyy, M. M. Hannuksela, and H. Li (2012) Depth-based motion vector prediction in 3D video coding, Proc. of Picture Coding Symposium.

    Google Scholar 

  28. D. Rusanovskyy, K. Müller, A. Vetro (2012) Common Test Conditions of 3DV Core Experiments, JCT-3V document A1100, Stockholm.

    Google Scholar 

  29. G. Bjøntegaard (2001) Calculation of average PSNR differences between RD-Curves, ITU-T SG16 Q.6, document VCEG-M33.

    Google Scholar 

  30. J. Y. Lee, T. Uchiumi, J. Lee, Y. Yamamoto, D.-S. Park (2012) 3D-CE5.a results on joint proposal for an improved depth-based motion vector prediction method by Samsung and Sharp, MPEG document M24824, Geneva, Switzerland.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmytro Rusanovskyy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rusanovskyy, D., Hannuksela, M.M. & Su, W. Depth-based coding of MVD data for 3D video extension of H.264/AVC. 3D Res 4, 6 (2013). https://doi.org/10.1007/3DRes.02(2013)6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/3DRes.02(2013)6

Keywords

Navigation