Skip to main content
Log in

Depth-of-focus and resolution-enhanced three-dimensional integral imaging with non-uniform lenslets and intermediate-view reconstruction technique

3D Research

Abstract

In this paper, a novel three-dimensional (3-D) integral imaging system to simultaneously improve the depth-of-focus (DOF) and the resolution of the reconstructed object images by using the non-uniform lenslet array and the intermediate-view reconstruction technique (IVRT) is proposed. That is, by using the non-uniform lenslets, DOF-enhanced integral images of 3-D objects can be picked up, and then by applying the IVRT to these picked-up integral images, resolution as well as DOF-enhanced object images can be reconstructed. To show the feasibility of the proposed system, experiments with test objects are performed and the results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. G. Lippmann (1908) La photographic integrale, C. R. Acad. Sci. 146:446–451.

    Google Scholar 

  2. Y. Kim, K. Hong and B. Lee (2010) Recent researches based on integral imaging display method, 3D Research. 1(1):17–27.

    Article  MathSciNet  Google Scholar 

  3. D.-Q. Pham, J.-H. Park and N. Kim (2010) Pickup and display of reflection-type microscopic three-dimensional object using confocal microscopy and integral imaging technique, 3D Research. 1(2):19–25.

    Article  Google Scholar 

  4. H. E. Ives (1931) Optical properties of a Lippmann lenticulated sheet, J. Opt. Soc. Am. 21:171–176.

    Article  Google Scholar 

  5. C. B. Burckhardt (1968) Optimum parameters and resolution limitation of integral photography, J. Opt. Soc. Am. 58:71–76.

    Article  Google Scholar 

  6. F. Okano, H. Hoshino, J. Arai, and I. Yuyama (1908) Three-dimensional video system based on integral photography, Opt. Eng. 38:1072–1077.

    Article  Google Scholar 

  7. J. Hong, Y. Kim, S.-G. Park, J.-H. Hong, S.-W. Min, S.-D. Lee, and B. Lee, (2010) 3D/2D convertible projection-type integral imaging using concave half mirror array, Opt. Express, 18:20628–20637.

    Article  Google Scholar 

  8. Y. Piao, D. -H. Shin and E. -S. Kim (2010) Computational depth conversion of reconstructed three-dimensional object images in curving-effective integral imaging system, Jpn. J. of Appl. Phys. 49:022501.

    Article  Google Scholar 

  9. J.-S. Jang and B. Javidi (2003) Large depth-of-focus time-multiplexed three-dimensional integral imaging by use of lenslets with nonuniform focal lengths and aperture sizes, Opt. Lett. 28:1924–1926.

    Article  Google Scholar 

  10. M. Martinez-Corral, B. Javidi, R. Martinez-Cuenca and G. Saavedra (2004) Integral imaging with improved depth of field by use of amplitudemodulated microlens arrays, Appl. Opt. 43:5806–5813.

    Article  Google Scholar 

  11. J.-S. Jang, F. Jin and B. Javidi (2003) Three-dimensional integral imaging with large depth of focus by use of real and virtual image fields, Opt. Lett. 28:1421–1423.

    Article  Google Scholar 

  12. R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral and B. Javidi (2005) Extended depth-of-field 3-D display and visualization by combination of amplitudemodulated microlenses and deconvolution tools, J. Display Technol. 1, 321–327.

    Article  Google Scholar 

  13. J.-S. Jang and B. Javidi (2002) Improved viewing resolution of three-dimensional integral imaging by use of non-stationary micro-optics, Opt. Lett. 27:324–326.

    Article  Google Scholar 

  14. D.-H. Shin, B.-H. Lee and E-S Kim (2006) Improved Viewing Quality of 3-D Images in Computational Integral Imaging Reconstruction Based on Lenslet Array Model, ETRI J. 28:521–524.

    Article  Google Scholar 

  15. J.-H. Park, J-H. Kim, Y. -H. Kim and B. -H. Lee (2005) Resolution-enhanced three-dimension / twodimension convertible display based on integral imaging, Opt. Express. 13:1875–1884.

    Article  Google Scholar 

  16. J.-S. Park, D.-C. Hwang, D. -H. Shin, E. -S. Kim (2006) Enhanced-resolution computational integral imaging reconstruction using an intermediate-view reconstruction technique, Opt. Eng. 45:117004.

    Article  Google Scholar 

  17. D.-H. Shin, E.-S. Kim and B. Lee (2005) Computational Reconstruction of Three-Dimensional Objects in Integral Imaging using Lenslet Array, Jpn. J. of Appl. Phys. 44:8016–8018.

    Article  Google Scholar 

  18. J.-W. Bae, H. -C. Park, E. -S. Kim and J. -S. Yoo (2003) Efficient disparity estimation algorithm based on spatial correlation, Opt. Eng. 42:176–181.

    Article  Google Scholar 

  19. K. H. Bae and E.-S. Kim (2003) New disparity estimation scheme based on adaptive matching windows for intermediate view reconstruction, Opt. Eng. 42:1778–1786.

    Article  Google Scholar 

  20. A. Redert, E. Hendriks, and J. Biemond (1997) Synthesis of multi-viewpoint images at nonintermediate positions, ICASSP-97 (IEEE International Conference on Acoustics, Speech, and Signal Processing), 4:2749–2752.

    Article  Google Scholar 

  21. S. Hong, J. Jang, and B. Javidi (2004) Three-dimensional volumetric object reconstruction using computational integral imaging, Opt. Express. 12:483–491.

    Article  Google Scholar 

  22. P. Marziliano, F. Dufaux, S. Winkler, and T. Ebrahimi (2002) A no-reference perceptual blur metric, in the Proceedings of the International Conference on Image Processing, 3:57–60.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun-Soo Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, SC., Kim, CK. & Kim, ES. Depth-of-focus and resolution-enhanced three-dimensional integral imaging with non-uniform lenslets and intermediate-view reconstruction technique. 3D Res 2, 6 (2011). https://doi.org/10.1007/3DRes.02(2011)6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/3DRes.02(2011)6

Keywords

Navigation