Skip to main content
Log in

Clinical Pharmacokinetics and Pharmacodynamics of Safinamide

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

The symptoms of Parkinson’s disease (PD) reflect disruptions of a number of brain neurotransmitter systems of varying type and degree. Pharmacological agents with multiple neurochemical mechanisms of action are therefore promising candidates for countering these problems and providing comprehensive symptomatic relief for patients. The pharmacological profile of safinamide includes reversible monoamine oxidase B inhibition, blockage of voltage-dependent Na+ channels, modulation of Ca2+ channels, and inhibition of glutamate release. Safinamide is administered once daily at oral doses of 50–100 mg; it is well-tolerated and safe. Clinical trials have found that it ameliorates motor symptoms when added to established levodopa or single dopamine receptor agonist therapy. The future role of safinamide in PD may be that it enables a reduction in the dosage of dopamine replacement therapies, thereby reducing the adverse effects associated with these treatments. The clinical convenience (once-daily administration), safety, and tolerability of safinamide are better than those of dopamine receptor agonists. The introduction of safinamide reflects a change of approach to drug development for anti-parkinsonian agents in that its broad spectrum of action corresponds to the multiple heterogeneous alterations of brain neurochemistry in PD, rather than being targeted at a single receptor type or neurochemical process. Safinamide is a promising new instrument for the effective symptomatic therapy of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Riederer P, Gerlach M, Müller T, Reichmann H. Relating mode of action to clinical practice: dopaminergic agents in Parkinson’s disease. Parkinsonism Relat Disord. 2007;13:466–79.

    Article  PubMed  Google Scholar 

  2. Metman LV, Del Dotto P, LePoole K, Konitsiotis S, Fang J, Chase TN. Amantadine for levodopa-induced dyskinesias: a 1-year follow-up study. Arch Neurol. 1999;56:1383–6.

    Article  CAS  PubMed  Google Scholar 

  3. Pahwa R, Tanner CM, Hauser RA, Sethi K, Isaacson S, Truong D, et al. Amantadine extended release for levodopa-induced dyskinesia in Parkinson’s disease (EASED study). Mov Disord. 2015;30:788–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. LeWitt PA, Guttman M, Tetrud JW, Tuite PJ, Mori A, Chaikin P, et al. Adenosine A2A receptor antagonist istradefylline (KW-6002) reduces “off” time in Parkinson’s disease: a double-blind, randomized, multicenter clinical trial (6002-US-005). Ann Neurol. 2008;63:295–302.

    Article  CAS  PubMed  Google Scholar 

  5. Weiner WJ. What do clinical trials tell us about treating patients? Parkinsonism Relat Disord. 2009;15:S34–7.

    Article  PubMed  Google Scholar 

  6. Bartl J, Müller T, Grünblatt E, Gerlach M, Riederer P. Chronic monoamine oxidase-B inhibitor treatment blocks monoamine oxidase-A enzyme activity. J Neural Transm. 2014;121:379–83.

    Article  CAS  PubMed  Google Scholar 

  7. Riederer P, Laux G. MAO-inhibitors in Parkinson’s disease. Exp Neurobiol. 2011;20:1–17.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Akao Y, Maruyama W, Shimizu S, Yi H, Nakagawa Y, Shamoto-Nagai M, et al. Mitochondrial permeability transition mediates apoptosis induced by N-methyl(R)salsolinol, an endogenous neurotoxin, and is inhibited by Bcl-2 and rasagiline, N-propargyl-1(R)-aminoindan. J Neurochem. 2002;82:913–23.

    Article  CAS  PubMed  Google Scholar 

  9. Akao Y, Maruyama W, Yi H, Shamoto-Nagai M, Youdim MB, Naoi M. An anti-Parkinson’s disease drug, N-propargyl-1(R)-aminoindan (rasagiline), enhances expression of anti-apoptotic bcl-2 in human dopaminergic SH-SY5Y cells. Neurosci Lett. 2002;326:105–8.

    Article  CAS  PubMed  Google Scholar 

  10. Bar-Am O, Weinreb O, Amit T, Youdim MB. Regulation of Bcl-2 family proteins, neurotrophic factors, and APP processing in the neurorescue activity of propargylamine. FASEB J. 2005;19:1899–901.

    CAS  PubMed  Google Scholar 

  11. Teo KC, Ho SL. Monoamine oxidase-B (MAO-B) inhibitors: implications for disease-modification in Parkinson’s disease. Transl Neurodegener. 2013;2:19.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Binda C, Wang J, Pisani L, Caccia C, Carotti A, Salvati P, et al. Structures of human monoamine oxidase B complexes with selective noncovalent inhibitors: safinamide and coumarin analogs. J Med Chem. 2007;50:5848–52.

    Article  CAS  PubMed  Google Scholar 

  13. Riederer P, Lachenmayer L, Laux G. Clinical applications of MAO-inhibitors. Curr Med Chem. 2004;11:2033–43.

    Article  CAS  PubMed  Google Scholar 

  14. Müller T, Przuntek H, Rieks M, Mackowiak A. Selegiline reduces cisplatin-induced neuronal death in neuroblastoma cells. Neurol Res. 2008;30:417–9.

    Article  PubMed  Google Scholar 

  15. Di Stefano AF, Rusca A. Pressor response to oral tyramine during co-administration with safinamide in healthy volunteers. Naunyn Schmiedebergs Arch Pharmacol. 2011;384:505–15.

    Article  PubMed  Google Scholar 

  16. Marquet A, Kupas K, Johne A, Astruc B, Patat A, Krosser S, et al. The effect of safinamide, a novel drug for Parkinson’s disease, on pressor response to oral tyramine: a randomized, double-blind, clinical trial. Clin Pharmacol Ther. 2012;92:450–7.

    CAS  PubMed  Google Scholar 

  17. Gregoire L, Jourdain VA, Townsend M, Roach A, Di PT. Safinamide reduces dyskinesias and prolongs l-DOPA antiparkinsonian effect in parkinsonian monkeys. Parkinsonism Relat Disord. 2013;19:508–14.

    Article  PubMed  Google Scholar 

  18. Podurgiel S, Collins-Praino LE, Yohn S, Randall PA, Roach A, Lobianco C, et al. Tremorolytic effects of safinamide in animal models of drug-induced parkinsonian tremor. Pharmacol Biochem Behav. 2013;105:105–11.

    Article  CAS  PubMed  Google Scholar 

  19. Marzo A, Dal Bo L, Monti NC, Crivelli F, Ismaili S, Caccia C, et al. Pharmacokinetics and pharmacodynamics of safinamide, a neuroprotectant with antiparkinsonian and anticonvulsant activity. Pharmacol Res. 2004;50:77–85.

    Article  CAS  PubMed  Google Scholar 

  20. Maj R, Fariello RG, Ukmar G, Varasi M, Pevarello P, McArthur RA, et al. PNU-151774E protects against kainate-induced status epilepticus and hippocampal lesions in the rat. Eur J Pharmacol. 1998;359:27–32.

    Article  CAS  PubMed  Google Scholar 

  21. Sadeghian M, Mullali G, Pocock JM, Piers T, Roach A, Smith KJ. Neuroprotection by safinamide in the 6-hydroxydopamine model of Parkinson’s disease. Neuropathol Appl Neurobiol. 2016;42(5):423–35.

    Article  CAS  PubMed  Google Scholar 

  22. Deeks ED. Safinamide: first global approval. Drugs. 2015;75:705–11.

    Article  CAS  PubMed  Google Scholar 

  23. Krosser S, Marquet A, Gallemann D, Wolna P, Fauchoux N, Hermann R, et al. Effects of ketoconazole treatment on the pharmacokinetics of safinamide and its plasma metabolites in healthy adult subjects. Biopharm Drug Dispos. 2012;33:550–9.

    Article  PubMed  Google Scholar 

  24. Leuratti C, Sardina M, Ventura P, Assandri A, Muller M, Brunner M. Disposition and metabolism of safinamide, a novel drug for Parkinson’s disease, in healthy male volunteers. Pharmacology. 2013;92:207–16.

    Article  CAS  PubMed  Google Scholar 

  25. Seithel-Keuth A, Johne A, Freisleben A, Kupas K, Lissy M, Krosser S. Absolute Bioavailability and effect of food on the disposition of safinamide immediate release tablets in healthy adult subjects. Clin Pharmacol Drug Dev. 2013;2:79–89.

    Article  CAS  PubMed  Google Scholar 

  26. Fariello RG, McArthur RA, Bonsignori A, Cervini MA, Maj R, Marrari P, et al. Preclinical evaluation of PNU-151774E as a novel anticonvulsant. J Pharmacol Exp Ther. 1998;285:397–403.

    CAS  PubMed  Google Scholar 

  27. Stocchi F, Arnold G, Onofrj M, Kwiecinski H, Szczudlik A, Thomas A, Safinamide Parkinson’s Study Group, et al. Improvement of motor function in early Parkinson disease by safinamide. Neurology. 2004;63:746–8.

    Article  CAS  PubMed  Google Scholar 

  28. Stocchi F, Borgohain R, Onofrj M, Schapira AH, Bhatt M, Lucini V, Study 015 Investigators, et al. A randomized, double-blind, placebo-controlled trial of safinamide as add-on therapy in early Parkinson’s disease patients. Mov Disord. 2012;27:106–12.

    Article  CAS  PubMed  Google Scholar 

  29. Schapira AH, Stocchi F, Borgohain R, Onofrj M, Bhatt M, Lorenzana P, et al. Long-term efficacy and safety of safinamide as add-on therapy in early Parkinson’s disease. Eur J Neurol. 2013;20:271–80.

    Article  CAS  PubMed  Google Scholar 

  30. Barone P, Fernandez HH, Ferreira J, Muller T, Saint-Hilaire M, Stacy M, et al. Safinamide as an add-on therapy to a stable dose of a single dopamine agonist: results from a randomized, placebo-controlled, 24-week multicenter trial in early idiopathic Parkinson disease (PD) patients (MOTION study) [abstract]. Neurology. 2013;80(7 Suppl):P01.061.

  31. Hauser RA, Silver D, Choudhry A, Eyal E, Isaacson S. Randomized, controlled trial of rasagiline as an add-on to dopamine agonists in Parkinson’s disease. Mov Disord. 2014;29:1028–34.

    Article  CAS  PubMed  Google Scholar 

  32. Borgohain R, Szasz J, Stanzione P, Meshram C, Bhatt M, Chirilineau D, et al. Randomized trial of safinamide add-on to levodopa in Parkinson’s disease with motor fluctuations. Mov Disord. 2014;29:229–37.

    Article  CAS  PubMed  Google Scholar 

  33. Borgohain R, Szasz J, Stanzione P, Meshram C, Bhatt MH, Chirilineau D, et al. Two-year, randomized, controlled study of safinamide as add-on to levodopa in mid to late Parkinson’s disease. Mov Disord. 2014;29:1273–80.

    Article  CAS  PubMed  Google Scholar 

  34. Schapira AH, Fox SH, Hauser RA, Jankovic J, Jost W, Kulisevsky J, et al. Safinamide add on to l-dopa: a randomized, placebo-controlled, 24-week global trial in patients with Parkinson’s disease (PD) and motor fluctuations (SETTLE) [abstract]. Neurology. 2013;80(7 Suppl):P01.062.

  35. Przuntek H, Conrad B, Dichgans J, Kraus PH, Krauseneck P, Pergande G, et al. SELEDO: a 5-year long-term trial on the effect of selegiline in early Parkinsonian patients treated with levodopa. Eur J Neurol. 1999;6:141–50.

    Article  CAS  PubMed  Google Scholar 

  36. Schnitker J, Müller T. Meta-analysis of placebo-controlled clinical trials of safinamide and entacapone as add-on therapy to levodopa in the treatment of Parkinson’s disease. Eur Neurol Rev. 2015;10:15–22.

    Article  Google Scholar 

  37. Ambrozi L, Danielczyk W. Treatment of impaired cerebral function in psychogeriatric patients with memantine–results of a phase II double-blind study. Pharmacopsychiatry. 1988;21:144–6.

    Article  CAS  PubMed  Google Scholar 

  38. Comi G, Leocani L. Assessment, pathophysiology and treatment of fatigue in multiple sclerosis. Expert Rev Neurother. 2002;2:867–76.

    Article  PubMed  Google Scholar 

  39. Barone P, Antonini A, Colosimo C, Marconi R, Morgante L, Avarello TP, et al. The PRIAMO study: a multicenter assessment of nonmotor symptoms and their impact on quality of life in Parkinson’s disease. Mov Disord. 2009;24:1641–9.

    Article  PubMed  Google Scholar 

  40. Apud JA, Mattay V, Chen J, Kolachana BS, Callicott JH, Rasetti R, et al. Tolcapone improves cognition and cortical information processing in normal human subjects. Neuropsychopharmacology. 2007;32:1011–20.

    Article  CAS  PubMed  Google Scholar 

  41. Fava M, Rosenbaum JF, Kolsky AR, Alpert JE, Nierenberg AA, Spillmann M, et al. Open study of the catechol-O-methyltransferase inhibitor tolcapone in major depressive disorder. J Clin Psychopharmacol. 1999;19:329–35.

    Article  CAS  PubMed  Google Scholar 

  42. Moreau JL, Borgulya J, Jenck F, Martin JR. Tolcapone: a potential new antidepressant detected in a novel animal model of depression. Behav Pharmacol. 1994;5:344–50.

    Article  CAS  PubMed  Google Scholar 

  43. Gasparini M, Fabrizio E, Bonifati V, Meco G. Cognitive improvement during tolcapone treatment in Parkinson’s disease. J Neural Transm. 1997;104:887–94.

    Article  CAS  PubMed  Google Scholar 

  44. Kayser AS, Allen DC, Navarro-Cebrian A, Mitchell JM, Fields HL. Dopamine, corticostriatal connectivity, and intertemporal choice. J Neurosci. 2012;32:9402–9.

    Article  CAS  PubMed  Google Scholar 

  45. Roussos P, Giakoumaki SG, Bitsios P. Tolcapone effects on gating, working memory, and mood interact with the synonymous catechol-O-methyltransferase rs4818c/g polymorphism. Biol Psychiatry. 2009;66:997–1004.

    Article  CAS  PubMed  Google Scholar 

  46. Dimpfel W, Hoffmann JA. Effects of rasagiline, its metabolite aminoindan and selegiline on glutamate receptor mediated signalling in the rat hippocampus slice in vitro. BMC Pharmacol. 2011;11:2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fabbri M, Rosa MM, Abreu D, Ferreira JJ. Clinical pharmacology review of safinamide for the treatment of Parkinson’s disease. Neurodegener Dis Manag. 2015;5:481–96.

    Article  PubMed  Google Scholar 

  48. Kornhuber J, Bormann J, Retz W, Hubers M, Riederer P. Memantine displaces [3H]MK-801 at therapeutic concentrations in postmortem human frontal cortex. Eur J Pharmacol. 1989;166:589–90.

    Article  CAS  PubMed  Google Scholar 

  49. Merello M, Nouzeilles MI, Cammarota A, Leiguarda R. Effect of memantine (NMDA antagonist) on Parkinson’s disease: a double-blind crossover randomized study. Clin Neuropharmacol. 1999;22:273–6.

    CAS  PubMed  Google Scholar 

  50. Varanese S, Howard J, Di RA. NMDA antagonist memantine improves levodopa-induced dyskinesias and “on-off” phenomena in Parkinson’s disease. Mov Disord. 2010;25:508–10.

    Article  PubMed  Google Scholar 

  51. Müller T, Russ H. Levodopa, motor fluctuations and dyskinesia in Parkinson’s disease. Expert Opin Pharmacother. 2006;7:1715–30.

    Article  PubMed  Google Scholar 

  52. Hoy SM, Keating GM. Rasagiline: a review of its use in the treatment of idiopathic Parkinson’s disease. Drugs. 2012;72:643–69.

    Article  CAS  PubMed  Google Scholar 

  53. LeWitt PA. A perspective on adjunctive therapy for Parkinson disease with monoamine oxidase-B inhibition. Clin Neuropharmacol. 2007;30:305–7.

    Article  PubMed  Google Scholar 

  54. Griffin E, Brown JN. Pregabalin for the treatment of restless legs syndrome. Ann Pharmacother. 2016;50:586–91.

    Article  CAS  PubMed  Google Scholar 

  55. Barone P, Cattaneo C, La Ferla R, Bonnizoni E, Sardina M. Significant reduction of pain treatments with safinamide administered as add-on therapy to levodopa in patients with Parkinson’s disease and fluctuation [abstract]. Mov Disord. 2015;22(Suppl 1):293.

    Google Scholar 

  56. Errington AC, Stohr T, Lees G. Voltage gated ion channels: targets for anticonvulsant drugs. Curr Top Med Chem. 2005;5:15–30.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Müller.

Ethics declarations

Funding

No external funding was used in the preparation of this manuscript.

Conflicts of interest

Thomas Müller has received consulting fees for serving on the international advisory board of Zambon and received lecture fees from Zambon. Paul Foley has no conflicts of interest that might be relevant to the contents of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müller, T., Foley, P. Clinical Pharmacokinetics and Pharmacodynamics of Safinamide. Clin Pharmacokinet 56, 251–261 (2017). https://doi.org/10.1007/s40262-016-0449-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-016-0449-5

Keywords

Navigation