Skip to main content
Log in

Comparison of Artificial Immune System and Particle Swarm Optimization Techniques for Error Optimization of Machine Vision Based Tool Movements

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

In conventional tool positioning technique, sensors embedded in the motion stages provide the accurate tool position information. In this paper, a machine vision based system and image processing technique for motion measurement of lathe tool from two-dimensional sequential images captured using charge coupled device camera having a resolution of 250 microns has been described. An algorithm was developed to calculate the observed distance travelled by the tool from the captured images. As expected, error was observed in the value of the distance traversed by the tool calculated from these images. Optimization of errors due to machine vision system, calibration, environmental factors, etc. in lathe tool movement was carried out using two soft computing techniques, namely, artificial immune system (AIS) and particle swarm optimization (PSO). The results show better capability of AIS over PSO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Sulzer, I. Kovač, Enhancement of positioning accuracy of industrial robots with a reconfigurable fine-positioning module. Precis. Eng. 34(2), 201–217 (2010). doi:10.1016/j.precisioneng.2009.06.006

    Article  Google Scholar 

  2. W. Kwasny, P. Turek, J. Jedrzejewski, Survey of machine tool error measuring methods. J. Mach. Eng. 11(4), 7–38 (2011)

    Google Scholar 

  3. C. Gong, J. Yuan, J. Ni, Nongeometric error identification and compensation for robotic system by inverse calibration. Int J Mach. Tools Manuf. 40(14), 2119–2137 (2000). doi:10.1016/S0890-6955(00)00023-7

    Article  Google Scholar 

  4. J. Zhu, Robust Thermal Error Modeling and Compensation for CNC Machine Tools (University Of Michigan, USA, 2008)

    Google Scholar 

  5. E.-M. Miao, Y.-Y. Gong, P.-C. Niu, C.-Z. Ji, H.-D. Chen, Robustness of thermal error compensation modeling models of CNC machine tools. Int. J. Adv. Manuf. Technol. 69(9–12), 2593–2603 (2013)

    Article  Google Scholar 

  6. Y.Z. Han, H.Y. Jin, Y.L. Liu, H.Y. Fu, A review of geometric error modeling and error detection for CNC machine tool. Appl. Mech. Mater. 303–306, 627–631 (2013)

    Article  Google Scholar 

  7. J. Ni, CNC machine accuracy enhancement through real-time error compensation. J. Manuf. Sci. Eng. 119(4B), 717–725 (1997)

    Article  Google Scholar 

  8. S. Mekid, T. Ogedengbe, A review of machine tool accuracy enhancement through error compensation in serial and parallel kinematic machines. Int. J. Precis. Technol. 1(3/4), 251–286 (2010)

    Article  Google Scholar 

  9. S. Barman, R. Sen, Enhancement of accuracy of multi-axis machine tools through error measurement and compensation of errors using laser interferometry technique. MAPAN 25(2), 79–87 (2010). doi:10.1007/s12647-010-0010-1

    Article  Google Scholar 

  10. Z. Huanglin, S. Yong, Z. Haiyan, Thermal Error Compensation on Machine Tools Using Rough Set Artificial Neural Networks. In: WRI World Congress on Computer Science and Information Engineering, (2009) pp. 51–55. doi:10.1109/csie.2009.155

  11. W. Weis, Processing of optical sensor data for tool monitoring with neural networks. In: WESCON/94. ‘Idea/Microelectronics’. Conference Record, (1994), pp. 351–355. doi:10.1109/wescon.1994.403572

  12. J. Jurkovic, M. Korosec, J. Kopac, New approach in tool wear measuring technique using CCD vision system. Int. J. Mach. Tools Manuf. 45(9), 1023–1030 (2005). doi:10.1016/j.ijmachtools.2004.11.030

    Article  Google Scholar 

  13. B. Nasiri, M. Meybodi, Speciation-based firefly algorithm for optimization in dynamic environments. Int. J. Artif. Intell. 8(s12), 118–132 (2012)

    Google Scholar 

  14. A.H. Mantawy, Y.L. Abdel-Magid, S.Z. Selim, A simulated annealing algorithm for unit commitment. Power Syst. IEEE Trans. 13(1), 197–204 (1998). doi:10.1109/59.651636

    Article  Google Scholar 

  15. M. Reyes-Sierra, C.C. Coello, Multi-objective particle swarm optimizers: a survey of the state-of-the-art. Int. J. Comput. Intell. Res. 2, 287–308 (2006)

    MathSciNet  Google Scholar 

  16. J. Xiao, Zhou Z-k, Zhang G-x, Ant colony system algorithm for the optimization of beer fermentation control. J. Zheijang Univ. Sci. 5(12), 1597–1603 (2004). doi:10.1631/jzus.2004.1597

    Article  Google Scholar 

  17. D. Karaboga, B. Basturk, Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems, in Foundations of Fuzzy Logic and Soft Computing, vol. 4529, Lecture Notes in Computer Science, ed. by P. Melin, O. Castillo, L. Aguilar, J. Kacprzyk, W. Pedrycz (Springer, Berlin Heidelberg, 2007), pp. 789–798. doi:10.1007/978-3-540-72950-1_77

    Chapter  Google Scholar 

  18. A.M. Taha, A.Y.C. Tang, Bat algorithm for rough set attribute reduction. J. Theor. Appl. Inf. Technol. 51(1), 1–8 (2013)

    Google Scholar 

  19. R.Y.M. Nakamura, L.A.M. Pereira, K.A. Costa, D. Rodrigues, J.P. Papa, X.S. Yang, BBA, A binary bat algorithm for feature selection. In: 25th Conference on graphics, patterns and images (SIBGRAPI), (2012), pp. 291–297. doi:10.1109/sibgrapi.2012.47

  20. X. Wang, Clonal selection algorithm in power filter optimization. In: Proceedings of the IEEE Mid-Summer Workshop on Soft Computing in Industrial Applications, (2005), pp. 122–127, doi:10.1109/smcia.2005.1466959

  21. M.Y. El-Sharkh, Clonal selection algorithm for power generators maintenance scheduling. Int. J. Electr. Power Energy Syst. 57, 73–78 (2014). doi:10.1016/j.ijepes.2013.11.051

    Article  Google Scholar 

  22. D. Rodrigues, L.A.M. Pereira, R.Y.M. Nakamura, K.A.P. Costa, X.-S. Yang, A.N. Souza, J.P. Papa, A wrapper approach for feature selection based on Bat algorithm and optimum-path forest. Expert Syst. Appl. 41(5), 2250–2258 (2014). doi:10.1016/j.eswa.2013.09.023

    Article  Google Scholar 

  23. P.K. Mahapatra, Spardha, I.K. Aulakh, A. Kumar, S. Devi, Particle swarm optimization (PSO) based tool position error optimization. Int. J. Comput. Appl. 72(23), 25–32 (2013)

    Google Scholar 

  24. J. Timmis, T. Knight, L. N. de Castro, E. Hart, An overview of artificial immune systems, in Computation in Cells and Tissues, ed. by R. Paton, H. Bolouri, M. Holcombe, J. H. Parish, R. Tateson, (Springer, Berlin Heidelberg, 2004) pp. 51–91.

  25. S.J. Nanda, G. Panda, B. Majhi, P. Tha, Development of a New Optimization Algorithm Based on Artificial Immune System and Its Application. In: ICIT ‘08. International Conference on Information Technology, 2008, (2008), pp. 45–48, doi:10.1109/icit.2008.20

  26. L.N. de Castro, F.J. Von Zuben, Learning and optimization using the clonal selection principle. Evol. Comput. IEEE Trans. 6(3), 239–251 (2002)

    Article  Google Scholar 

  27. L.N. de Castro, J. Timmis, Artificial Immune System: A New Computational Intelligence Approach, 1st edn. (Springer-Verlag, London, Berlin, Heidelberg, 2002), pp. 29–45

    Google Scholar 

  28. J. Kennedy, R. Eberhart, Particle swarm optimization. In: Proceedings, IEEE International Conference on Neural Networks, 1995. (1995), vol. 1944, pp. 1942–1948. doi:10.1109/icnn.1995.488968

  29. F.Y. Shih, Y.-T. Wu, Fast Euclidean distance transformation in two scans using a 3 × 3 neighborhood. Comput. Vis. Image Underst. 93(2), 195–205 (2004). doi:10.1016/j.cviu.2003.09.004

    Article  Google Scholar 

  30. Optics and Optical Instruments Master Source Book (P123A), 70th Anniversary Edition, Edmund Optics Inc., 18 Woodlands Loop #04-00, Singapore, pp 402 (2012)

  31. R.C. Gonzalez, R.E. Woods, S.L. Eddins, Digital Image Processing Using MATLAB, 2nd edn. (Tata McGraw-Hill Education Private Ltd., India, 2011), pp. 511–516

    Google Scholar 

  32. L.N. de Castro, J. Timmis, An artificial immune network for multimodal function optimization. In: CEC ‘02. Proceedings of the 2002 congress on evolutionary computation, 2002, (2002), pp. 699–704. doi:10.1109/cec.2002.1007011

  33. D. Hongwei, Z. Yunyi, G. Shangce, T. Zheng, Dynamic Clone Population Based Artificial Immune System. In: ICICIC ‘07. Second international conference on innovative computing, information and control, 2007, (2007), pp. 442–442. doi:10.1109/icicic.2007.274

  34. U. Aickelin, Q. Chen, On Affinity Measures For Artificial Immune System Movie Recommenders, in: Proceedings RASC-2004, The 5th international conference on recent advances in soft computing, Nottingham, UK, 2004, pp. 46–53

  35. S. Yuhui, R. Eberhart, A modified particle swarm optimizer. In: Proceedings of evolutionary computation, IEEE World Congress on Computational Intelligence, (1998), pp. 69–73. doi:10.1109/ICEC.1998.699146

Download references

Acknowledgments

This work is supported by the Council of Scientific & Industrial Research (CSIR, India), New Delhi under the Network programme in collaboration with CSIR-CMERI, Durgapur. Authors are thankful to Director, CSIR-CSIO for his guidance during investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasant Kumar Mahapatra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahapatra, P.K., Sethi, S. & Kumar, A. Comparison of Artificial Immune System and Particle Swarm Optimization Techniques for Error Optimization of Machine Vision Based Tool Movements. J. Inst. Eng. India Ser. C 96, 363–372 (2015). https://doi.org/10.1007/s40032-015-0181-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-015-0181-1

Keywords

Navigation