Skip to main content
Log in

High Charge Carrier Mobility in Two Dimensional Indium (III) Isophthalic Acid Based Frameworks

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences Aims and scope Submit manuscript

Abstract

The effect of dimensionality (1D to 2D) on charge carrier mobility have been studied thoroughly on three In(III)-isophthalate based MOFs [In-IA-1D, In-IA-2D-1 and -2]. In-IA-1D possess 1D nanotubular architecture with [(CH3)2NH2]+. In-IA-2D-1 have 2D layers containing only [(CH3)2NH2]+ cations. Whereas, In-IA-2D-2 have [(CH3)2NH2]+ cations as well as solvent DMF molecule inside the crystal structure. Due to presence of the π–π stacking arrangement among the phenyl rings of IA moieties facilitates the high charge carrier mobility (4.6 × 10−3 cm2 V−1 s−1 at VG = −40 V) in In-IA-2D-2. However, In-IA-1D and In-IA-2D-1 does not show any charge carrier mobility due to absence of π–π stacking arrangement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wei Z, Hong W, Geng H, Wang C, Liu Y, Li R, Xu W, Shuai Z, Hu W, Wang Q, Zhu D (2010) Organic single crystal field-effect transistors based on 6h-pyrrolo[3,2–b:4,5–b] bis [1,4] benzothiazine and its derivatives. Adv Mater 22:2458–2462

    Article  Google Scholar 

  2. Jiang L, Hu W, Wei Z, Xu W, Meng H (2009) High-performance organic single-crystal transistors and digital inverters of an anthracene derivative. Adv Mater 21:3649–3653

    Article  Google Scholar 

  3. Kang SJ, Bae I, Park YJ, Park TH, Sung J, Yoon SC, Kim KH, Choi DH, Park C (2009) Non-volatile ferroelectric poly(vinylidene fluoride-co-trifluoroethylene) memory based on a single-crystalline tri-isopropylsilylethynyl pentacene field-effect transistor. Adv Funct Mater 19:1609–1616

    Article  Google Scholar 

  4. Sirringhaus H (2005) Device physics of solution-processed organic field-effect transistors. Adv Mater 17:2411–2425

    Article  Google Scholar 

  5. Sun Y, Liu Y, Zhu D (2005) Advances in organic field-effect transistors. J Mater Chem 15:53–65

    Article  Google Scholar 

  6. Veres J, Ogier S, Lloyd G, de Leeuw D (2004) Gate insulators in organic field-effect transistors. Chem Mater 16:4543–4555

    Article  Google Scholar 

  7. Katz HE, Bao Z, Gilat SL (2001) Synthetic chemistry for ultrapure, processable, and high-mobility organic transistor semiconductors. Acc Chem Res 34:359–369

    Article  Google Scholar 

  8. Murphy AR, Frechet JMJ (2007) Organic semiconducting oligomers for use in thin film transistors. Chem Rev 107:1066–1096

    Article  Google Scholar 

  9. Wang L, Nan F, Yang X, Peng Q, Li Q, Shuai Z (2010) Computational methods for design of organic materials with high charge mobility. Chem Soc Rev 39:423–434

    Article  Google Scholar 

  10. Eddaoudi M, Moler DB, Li H, Chen B, Reinekee TM, O’Keeffe M, Yaghi OM (2001) Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Acc Chem Res 34:319–330

    Article  Google Scholar 

  11. Janiak C (1997) Functional organic analogues of zeolites based on metal–organic coordination framework. Angew Chem Int Ed Engl 36:1431–1434

    Article  Google Scholar 

  12. Blake AJ, Champness NR, Hubberstey P, Li W-S, Withersby MA, Schroder M (1999) Inorganic crystal engineering using self-assembly of tailored building-blocks. Coord Chem Rev 183:117–138

    Article  Google Scholar 

  13. Kesanli B, Cui Y, Smith M, Bittner E, Bockrath B, Lin W (2005) Highly interpenetrated metal–organic frameworks for hydrogen storage. Angew Chem Int Ed 44:72–75

    Article  Google Scholar 

  14. Kitagawa S, Kitaura R, Noro S-I (2004) Functional porous coordination polymers. Angew Chem Int Ed 43:2334–2375

    Article  Google Scholar 

  15. Ferey G (2008) Hybrid porous solids: past, present, future. Chem Soc Rev 37:191–214

    Article  Google Scholar 

  16. Chen B, Xiang S, Qian G (2010) Metal−organic frameworks with functional pores for recognition of small molecules. Acc Chem Res 43:1115–1124

    Article  Google Scholar 

  17. Ma L, Abney C, Lin W (2009) Enantioselective catalysis with homochiral metal–organic frameworks. Chem Soc Rev 38:1248–1256

    Article  Google Scholar 

  18. Gu ZG, Cai YP, Fang HC, Zhou ZY, Thallapally PK, Tian JA, Liu J, Exarhos GJ (2010) Conversion of nonporous helical cadmium organic framework to a porous form. Chem Commun 46:5373–5375

    Article  Google Scholar 

  19. Chen B, Eddaoudi M, Hyde ST, O’Keeffe M, Yaghi OM (2001) Interwoven metal-organic framework on a periodic minimal surface with extra-large pores. Science 291:1021–1023

    Article  ADS  Google Scholar 

  20. Panda T, Pachfule P, Chen Y, Jiang J, Banerjee R (2011) Amino functionalized zeolitic tetrazolate framework (ZTF) with high capacity for storage of carbon dioxide. Chem Commun 47:2011–2013

    Article  Google Scholar 

  21. Panda T, Pachfule P, Banerjee R (2011) Template induced structural isomerism and enhancement of porosity in manganese(II) based metal–organic frameworks (Mn-MOFs). Chem Commun 47:7674–7676

    Article  Google Scholar 

  22. Feng X, Ding X, Jiang D (2012) Covalent organic frameworks. Chem Soc Rev 41:6010–6022

    Article  Google Scholar 

  23. Bertrand GHV, Michaelis VK, Ong T-C, Griffin RG, Dinca M (2013) Thiophene-based covalent organic frameworks. Proc Natl Acad Sci USA 110:4923–4928

    Article  ADS  Google Scholar 

  24. Narayan TC, Miyakai T, Seki S, Dinca M (2012) High charge mobility in a tetrathiafulvalene-based microporous metal-organic framework. J Am Chem Soc 134:12932–12935

    Article  Google Scholar 

  25. Sun L, Miyakai T, Seki S, Dinca M (2013) Mn2(2,5-disulfhydrylbenzene-1,4-dicarboxylate): a microporous MOF with infinite (-Mn-S-) chains and high intrinsic charge mobility. J Am Chem Soc 135:8185–8188

    Article  Google Scholar 

  26. Panda T, Kundu T, Banerjee R (2013) Structural isomerism leading to variable proton conductivity in indium (III) isophthalic acid based frameworks. Chem Commun 49:6197–6199

    Article  Google Scholar 

  27. Panda T, Kundu T, Banerjee R (2012) Self-assembled one dimensional functionalized metal–organic nanotubes (MONTs) for proton conduction. Chem Commun 48:5464–5466

    Article  Google Scholar 

  28. Noh Y-Y, Kim J-J, Yoshida Y, Yase K (2003) Triangular nanoplates of silver: synthesis, characterization, and use as sacrificial templates for generating triangular nanorings of gold. Adv Mater 15:695–699

    Article  Google Scholar 

  29. Arulkashmir A, Mahale RY, Dharmapurikar SS, Jangid MK, Krishnamoorthy K (2012) Supramolecular interaction facilitated small molecule films for organic field effect transistors. Polym Chem 3:1641–1646

    Article  Google Scholar 

  30. Lu W, Roy VAL, Che CM (2006) Self-assembled nanostructures with tridentate cyclometalated platinum(II) complexes. Chem Commun 38:3972–3974

    Article  Google Scholar 

Download references

Acknowledgments

TP acknowledge CSIR for SRF. RB acknowledges CSIR’s Five Year Plan Project (CSC0122 and CSC0102) for funding. Financial assistance from BRNS (2011/37C/44/BRNS) is acknowledged. We also acknowledge Dr K. Krishnamoorthy and Mr Arulraj Arulkashmir for their kind help regarding charge carrier mobility studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Banerjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panda, T., Banerjee, R. High Charge Carrier Mobility in Two Dimensional Indium (III) Isophthalic Acid Based Frameworks. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 84, 331–336 (2014). https://doi.org/10.1007/s40010-014-0152-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40010-014-0152-6

Keywords

Navigation