Skip to main content
Log in

Bioremediation of dry olive-mill residue removes inhibition of growth induced by this waste in tomato plants

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The disposal of dry olive-mill residue, the waste product from olive oil production, is a serious environmental issue. Dry olive-mill residue, being rich in organic and inorganic nutrients, could be used as fertilizer; however, it contains phenolic compounds that can inhibit plant growth. In order to clarify whether bioremediation of this waste could be a valuable strategy for its reuse, the effect of aqueous extract of dry olive-mill residue, untreated or bioremediated by the saprobe fungi Coriolopsis rigida and Penicillium chrysogenum-10, has been analyzed in relation to some physiological parameters of tomato plants. The data show that aqueous dry olive-mill residue significantly reduces the biomass of roots and shoots. In particular, it causes a dramatic reduction in root length, area, and volume as well as in the number of root tips. At an early stage, aqueous dry olive-mill residue also reduces the content of chlorophyll a and b and the efficiency of PS II. The inhibition of growth seems to be due to the increase in phenolic compounds that induce oxidative stress. Interestingly, when plants are treated with aqueous dry olive-mill residue bioremediated by saprobe fungi a decrease in phenolic content and an alleviation of oxidative stress occur. In conclusion, the results show that bioremediation of aqueous dry olive-mill residue is a useful tool to remove most of the inhibiting effects of this waste on plant growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Almagro L, Gomez Ros LV, Belchi-Navarro S, Bru R, Ros Barcelo A, Pedreno MA (2009) Class III peroxidases in plant defence reactions. J Exp Bot 60(2):377–390

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  Google Scholar 

  • Aranda E, Sampedro I, Ocampo JA, Garcia-Romera I (2004) Contribution of hydrolytic enzymes produced by saprophytic fungi to the decrease in plant toxicity caused by water-soluble substances in olive mill dry residue. Appl Microbiol Biotechnol 64(1):132–135

    Article  CAS  Google Scholar 

  • Aranda E, Sampedro I, Ocampo JA, García-Romera I (2006) Phenolic removal of olive-mill dry residues by laccase activity of white-rot fungi and its impact on tomato plant growth. Int Biodeter Biodegr 58(3–4):176–179

    Article  CAS  Google Scholar 

  • Aranda E, Garcia-Romera I, Ocampo JA, Carbone V, Mari A, Malorni A, Sannino F, De Martino A, Capasso R (2007) Chemical characterization and effects on Lepidium sativum of the native and bioremediated components of dry olive mill residue. Chemosphere 69(2):229–239

    Article  CAS  Google Scholar 

  • Bai R, Ma FW, Liang D, Zhao X (2009) Phthalic acid induces oxidative stress and alters the activity of some antioxidant enzymes in roots of Malus prunifolia. J Chem Ecol 35(4):488–494

    Article  CAS  Google Scholar 

  • Batish DR, Singh HP, Setia N, Kaur S, Kohli RK (2006) 2-Benzoxazolinone (BOA) induced oxidative stress, lipid peroxidation and changes in some antioxidant enzyme activities in mung bean (Phaseolus aureus). Plant Physiol Bioch 44(11–12):819–827

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Cummins I, Dixon DP, Freitag-Pohl S, Skipsey M, Edwards R (2011) Multiple roles for plant glutathione transferases in xenobiotic detoxification. Drug Metab Rev 43(2):266–280

    Article  CAS  Google Scholar 

  • Ding J, Sun Y, Xiao CL, Shi K, Zhou YH, Yu JQ (2007) Physiological basis of different allelopathic reactions of cucumber and fig leaf gourd plants to cinnamic acid. J Exp Bot 58(13):3765–3773

    Article  CAS  Google Scholar 

  • Ferrer MA, Calderon AA, Muñoz R, Ros Barceló A (1990) 4-Methoxy-α-naphthol as a specific substrate for kinetic, zymographic and cytochemical studies on plant peroxidase activities. Phytochem Anal 1(2):63–69

    Article  Google Scholar 

  • Frew JE, Jones P, Scholes G (1983) Spectrophotometric determination of hydrogen peroxide and organic hydropheroxides at low concentrations in aqueous solution. Anal Chim Acta 155:139–150

    Article  CAS  Google Scholar 

  • Garcia-Sanchez M, Garrido I, Casimiro Ide J, Casero PJ, Espinosa F, Garcia-Romera I, Aranda E (2012) Defence response of tomato seedlings to oxidative stress induced by phenolic compounds from dry olive mill residue. Chemosphere 89(6):708–716

    Article  CAS  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249(22):7130–7139

    CAS  Google Scholar 

  • Hong Y, Hu HY, Xie X, Sakoda A, Sagehashi M, Li FM (2009) Gramine-induced growth inhibition, oxidative damage and antioxidant responses in freshwater cyanobacterium Microcystis aeruginosa. Aquat Toxicol 91(3):262–269

    Article  CAS  Google Scholar 

  • Inderjit Duke SO (2003) Ecophysiological aspects of allelopathy. Planta 217(4):529–539

    Article  CAS  Google Scholar 

  • Isebaert S, Haesaert G, Devreese R, Maene P, Fremaut F, Vlaemynck G (2005) Fusarium spp. and Fusarium mycotoxins in maize: a problem for Flanders? Commun Agric Appl Biol Sci 70(3):129–136

    CAS  Google Scholar 

  • Iwasaki Y, Hirasawa T, Maruyama Y, Ishii Y, Ito R, Saito K, Umemura T, Nishikawa A, Nakazawa H (2011) Effect of interaction between phenolic compounds and copper ion on antioxidant and pro-oxidant activities. Toxicol In Vitro 25(7):1320–1327

    Article  CAS  Google Scholar 

  • Martì MC, Camejo D, Fernandez-Garcia N, Rellan-Alvarez R, Marques S, Sevilla F, Jimenez A (2009) Effect of oil refinery sludges on the growth and antioxidant system of alfalfa plants. J Hazard Mater 171(1–3):879–885

    Article  Google Scholar 

  • McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244(22):6049–6055

    CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410

    Article  CAS  Google Scholar 

  • Mittler R, Poulos TL (2005) Ascorbate peroxidase. In: Smirnoff N (ed) Antioxidants and reactive oxygen species in plants. Blackwell Publishing Ltd, Oxford, pp 87–100

    Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  Google Scholar 

  • Oxborough K, Baker NR (1997) Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components—Calculation of qP and Fv’/Fm’ without measuring Fo’. Photosynth Res 54(2):135–142

    Article  CAS  Google Scholar 

  • Paradiso A, Berardino R, de Pinto MC, di Toppi LS, Storelli MM, Tommasi F, De Gara L (2008) Increase in ascorbate–glutathione metabolism as local and precocious systemic responses induced by cadmium in durum wheat plants. Plant Cell Physiol 49(3):362–374

    Article  CAS  Google Scholar 

  • Paradiso A, de Pinto MC, Locato V, De Gara L (2012) Galactone-γ-lactone-dependent ascorbate biosynthesis alters wheat kernel maturation. Plant Biol 14(4):652–658

    Article  CAS  Google Scholar 

  • Ritov VB, Menshikova EV, Goldman R, Kagan VE (1996) Direct oxidation of polyunsaturated cis-parinaric fatty acid by phenoxyl radicals generated by peroxidase/H2O2 in model systems and in HL-60 cells. Toxicol Lett 87(2–3):121–129

    Article  CAS  Google Scholar 

  • Romero-Romero T, Sanchez-Nieto S, SanJuan-Badillo A, Anaya AL, Cruz-Ortega R (2005) Comparative effects of allelochemical and water stress in roots of Lycopersicon esculentum Mill. (Solanaceae). Plant Sci 168(4):1059–1066

    Article  CAS  Google Scholar 

  • Sampedro I, Aranda E, Martín J, García-Garrido JM, García-Romera I, Ocampo JA (2004) Saprobic fungi decrease plant toxicity caused by olive mill residues. Appl Soil Ecol 26(2):149–156

    Article  Google Scholar 

  • Sampedro I, D’Annibale A, Ocampo JA, Stazi SR, Garcia-Romera I (2007a) Solid-state cultures of Fusarium oxysporum transform aromatic components of olive-mill dry residue and reduce its phytotoxicity. Bioresource Technol 98(18):3547–3554

    Article  CAS  Google Scholar 

  • Sampedro I, Marinari S, D’Annibale A, Grego S, Ocampo JA, Garcia-Romera I (2007b) Organic matter evolution and partial detoxification in two-phase olive mill waste colonized by white-rot fungi. Int Biodeter Biodegr 60(2):116–125

    Article  CAS  Google Scholar 

  • Saparrat MCN, Jurado M, Diaz R, Romera IG, Martinez MJ (2010) Transformation of the water soluble fraction from “alpeorujo” by Coriolopsis rigida: the role of laccase in the process and its impact on Azospirillum brasiliense survival. Chemosphere 78(1):72–76

    Article  CAS  Google Scholar 

  • Singh HP, Kaur S, Batish DR, Kohli RK (2009) Caffeic acid inhibits in vitro rooting in mung bean [Vigna radiata (L.) Wilczek] hypocotyls by inducing oxidative stress. Plant Growth Regul 57(1):21–30

    Article  CAS  Google Scholar 

  • Takahama U, Oniki T (1992) Regulation of peroxidase-dependent oxidation of phenolics in the apoplast of spinach leaves by ascorbate. Plant Cell Physiol 33(4):379–387

    CAS  Google Scholar 

  • Weir TL, Park SW, Vivanco JM (2004) Biochemical and physiological mechanisms mediated by allelochemicals. Curr Opin Plant Biol 7(4):472–479

    Article  CAS  Google Scholar 

  • Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels C, Van Montagu M, Inze D, Van Camp W (1997) Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. EMBO J 16(16):4806–4816

    Article  CAS  Google Scholar 

  • Yang CM, Lee CN, Chou CH (2002) Effects of three allelopathic phenolics on chlorophyll accumulation of rice (Oryza sativa) seedlings: I. Inhibition of supply-orientation. Bot Bull Acad Sinica 43:299–304

    CAS  Google Scholar 

  • Zhang J, Kirkham MB (1996) Antioxidant responses to drought in sunflower and sorghum seedlings. New Phytol 132(3):361–373

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study, funded by the Spanish Ministry of Science and Innovation (project AGL2008-572), was carried out at the Estación Experimental del Zaidín (EEZ) in Spain and the University of Bari in Italy. The authors gratefully acknowledge the assistance provided by the Andalusian regional authority’s Study Extension Programs (13P and JAE), co-funded by the Consejo Superior de Investigaciones Científicas (CSIC) and the European Social Fund, to Mercedes García-Sánchez for her pre-doctoral grant and Elisabet Aranda for her postdoctoral research contract. The authors are thankful to Michael O’Shea for proof-reading the English text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. de Pinto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Sánchez, M., Paradiso, A., García-Romera, I. et al. Bioremediation of dry olive-mill residue removes inhibition of growth induced by this waste in tomato plants. Int. J. Environ. Sci. Technol. 11, 21–32 (2014). https://doi.org/10.1007/s13762-012-0170-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-012-0170-3

Keywords

Navigation