Skip to main content

Advertisement

Log in

Efficient biofuel production from traditional maize under low input

  • Research Article
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

Traditional crop varieties are adapted to low inputs of fertilizers, pesticides, and water. In addition, biofuel from local vegetal biomass stimulates the economy in depressed rural areas. Biofuels also contribute to the reduction of greenhouse gas emissions. Here, we tested the suitability of traditional maize varieties as solid biofuel. We cultivated traditional maize varieties without pesticides and irrigation. Four varieties were cropped in two locations, with two fertilization levels, and harvested at three different dates. For each trait, we measured the heating value, the ash content, and the elemental composition. Results show that plants harvested at physiological maturity, 150 days after sowing, have about 10 % more biomass and 20–30 % less ash, N, K, and Cl than plants harvested 115 days after sowing. Moreover, reducing standard N input by 40 % did not reduce the biomass yield. Calculations show that traditional maize varieties can produce an energy of 15–23 · 104 MJ/ha. These findings demonstrate that traditional maize cultivation can be optimized to increase the efficiency of biomass production and to reduce the environmental impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amon T, Amon B, Kryvoruchko V, Zollitsch W, Mayer K, Gruber L (2007) Biogas production from maize and dairy cattle manure—influence of biomass composition on the methane yield. Agric Ecosyst Environ 118:173–182. doi:10.1016/j.agee.2006.05.007

    Article  CAS  Google Scholar 

  • Avila-Segura M, Barak P, Hedtcke JL, Posner JL (2011) Nutrient and alkalinity removal by corn grain, stover and cob harvest in upper Midwest USA. Biomass Bioenergy 35:1190–1195. doi:10.1016/j.biombioe.2010.12.010

    Article  CAS  Google Scholar 

  • Carena MJ (2005) Maize commercial hybrids compared to improved population hybrids for grain yield and agronomic performance. Euphytica 141:201–208. doi:10.1007/s10681-005-7072-0

    Article  Google Scholar 

  • CEN (2009a) Determination of ash content. EN 14775 Comité Européen de Normalisation, Brussels

    Google Scholar 

  • CEN (2009b) Determination of calorific value. EN 14981 Comité Européen de Normalisation, Brussels

    Google Scholar 

  • CEN (2011a) Determination of major elements Al, Ca, Fe, Mg, P, K, Si, Na and Ti. EN 15290 Comité Européen de Normalisation, Brussels

    Google Scholar 

  • CEN (2011b) Determination of total content of carbon, hydrogen and nitrogen-instrumental methods. EN 15104 Comité Européen de Normalisation, Brussels

    Google Scholar 

  • CEN (2011c) Determination of total content of sulfur and chlorine. EN 15289 Comité Européen de Normalisation, Brussels

    Google Scholar 

  • CEN (2011d) Sample preparation. EN 14780 Comité Européen de Normalisation, Brussels

    Google Scholar 

  • Don A, Osborne B, Hastings A, Skiba CMS, Drewer J, Flessa H, Freibauer A, Hyvonen N, Jones MB, Lanigan GJ, Mander U, Monti A, Djomo SN, Valentine J, Walter K, Zegada-Lizarazu W, Zenone T (2011) Land-use change to bioenergy production in Europe: implications for the greenhouse gas balance and soil carbon. GCB Bioenergy 4:372–391. doi:10.1111/j.1757-1707.2011.01116.x

    Article  Google Scholar 

  • Ebenstein A (2010) The consequences of industrialization: evidence from water pollution and digestive cancers in China. Rev Econ Stat 94:186–201. doi:10.1162/REST_a_00150

    Article  Google Scholar 

  • Fagernäs L, Brammer J, Wilén C, Lauer M, Verhoeff F (2010) Drying of biomass for second generation synfuel production. Biomass Bioenergy 34:1267–1277. doi:10.1016/j.biombioe.2010.04.005

    Article  Google Scholar 

  • González-Prieto SJ, Cabaneiro A, Villar MC, Carballas T, Carballas M (1996) Effect of soil characteristics on N mineralization capacity in 112 native and agricultural soils from the northwest of Spain. Biol Fertil Soils 22:252–260. doi:10.1007/BF00382521

    Article  Google Scholar 

  • Herrmann A, Rath J (2012) Biogas production from maize: current state, challenges and prospects. 1. Methane yield potential. Bioenergy Res 5:1027–1042. doi:10.1007/s12155-012-9202-6

    Article  CAS  Google Scholar 

  • Hoskinson RL, Karlen DL, Birrell SJ, Radtke CW, Wilhelm WW (2007) Engineering, nutrient removal, and feedstock conversion evaluations of four corn stover harvest scenarios. Biomass Bioenergy 31:126–136. doi:10.1016/j.biombioe.2006.07.006

    Article  CAS  Google Scholar 

  • Houlton B, Boyer E, Finzi A, Galloway J, Leach A, Liptzin D, Melillo J, Rosenstock T, Sobota D, Townsend A (2013) Intentional versus unintentional nitrogen use in the United States: trends, efficiency and implications. Biogeochem 114:11–23. doi:10.1007/s10533-012-9801-5

    Article  Google Scholar 

  • Kutka FJ, Smith ME (2007) How many parents give the highest yield in predicted synthetic and composite populations of maize? Crop Sci 47:1905–1913. doi:10.2135/cropsci2006.12.0802sc

    Article  Google Scholar 

  • Ladha JK, Pathak H, Krupnik T, Six J, van Kessel C (2005) In: Donald LS (ed) Efficiency of fertilizer nitrogen in cereal production: retrospects and prospects. Advances in agronomy, 1st edn. Elsevier, New York, pp 85–156

    Google Scholar 

  • Lafitte HR, Edmeades GO (1994) Improvement for tolerance to low soil nitrogen in tropical maize I. Selection criteria. Field Crops Res 39:1–14. doi:10.1016/0378-4290(94)90066-3

    Article  Google Scholar 

  • Obernberger I, Brunner T, Bärnthaler G (2006) Chemical properties of solid biofuels—significance and impact. Biomass Bioenergy 30:973–982. doi:10.1016/j.biombioe.2006.06.011

    Article  CAS  Google Scholar 

  • Pordesimo LO, Hames BR, Sokhansanj S, Edens WC (2005) Variation in corn stover composition and energy content with crop maturity. Biomass Bioenergy 28:366–374. doi:10.1016/j.biombioe.2004.09.003

    Article  CAS  Google Scholar 

  • Reijnders L (2010) Transport biofuel yields from food and lignocellulosic C4 crops. Biomass Bioenergy 34:152–155. doi:10.1016/j.biombioe.2009.10.004

    Article  CAS  Google Scholar 

  • Schittenhelm S (2008) Chemical composition and methane yield of maize hybrids with contrasting maturity. Eur J Agron 29:72–79. doi:10.1016/j.eja.2008.04.001

    Article  CAS  Google Scholar 

  • Searcy E, Flynn PC (2010) A criterion for selecting renewable energy processes. Biomass Bioenergy 34:798–804. doi:10.1016/j.biombioe.2010.01.023

    Article  CAS  Google Scholar 

  • Sultana A, Kumar A (2011) Optimal configuration and combination of multiple lignocellulosic biomass feedstocks delivery to a biorefinery. Bioresour Technol 102:9947–9956. doi:10.1016/j.biortech.2011.07.119

    Article  CAS  PubMed  Google Scholar 

  • Tao G, Geladi P, Lestander TA, Xiong S (2012) Biomass properties in association with plant species and assortments. II: A synthesis based on literature data for ash elements. Renew Sustain Energy Rev 16:3507–3522. doi:10.1016/j.rser.2012.01.023

    Article  CAS  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677. doi:10.1038/nature01014

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Shahbazi A, Hanna MA (2011) Characterization of corn stover, distiller grains and cattle manure for thermochemical conversion. Biomass Bioenergy 35:171–178. doi:10.1016/j.biombioe.2010.08.018

    Article  CAS  Google Scholar 

  • Xiong S, Zhang Y, Zhuo Y, Lestander TA, Geladi P (2010) Variations in fuel characteristics of corn (Zea mays) stovers: General spatial patterns and relationships to soil properties. Renew Energy 35:1185–1191. doi:10.1016/j.renene.2009.11.032

    Article  CAS  Google Scholar 

  • Zhao W, Li Z, Wang D, Zhu Q, Sun R, Meng B, Zhao G (2008) Combustion characteristics of different parts of corn straw and NO formation in a fixed bed. Bioresour Technol 99:2956–2963. doi:10.1016/j.biortech.2007.06.030

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Cespa S.A. (Spanish company working on waste management and biomass-to-energy conversion), the Castilla-La Mancha Government (project POII10-0128-1789), and the Xunta de Galicia (through the Parga Pondal program and project 09MRU033403PR). The authors also thank INORDE for its participation in the project. B. Ordas thanks Serafin Gonzalez-Prieto for his valuable help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clara Serrano.

About this article

Cite this article

Serrano, C., Monedero, E., Portero, H. et al. Efficient biofuel production from traditional maize under low input. Agron. Sustain. Dev. 34, 561–567 (2014). https://doi.org/10.1007/s13593-013-0174-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13593-013-0174-5

Keywords

Navigation