Skip to main content
Log in

Dilaton Quantum Cosmology with a Schrödinger-like Equation

  • Particles and Fields
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

A quantum cosmological model with radiation and a dilaton scalar field is analyzed. The Wheeler–DeWitt equation in the minisuperspace induces a Schrödinger equation, which can be solved. An explicit wavepacket is constructed for a particular choice of the ordering factor. A consistent solution is possible only when the scalar field is a phantom field. Moreover, although the wavepacket is time-dependent, a Bohmian analysis allows to extract a bouncing behavior for the scale factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. It can already be stated that the solutions are not equivalent to the expectation values found before, a consequence of the absence of unitarity: when the wavepacket is unitary, the Bohmian trajectories reproduces the expectation values.

References

  1. J.E. Lidsey, D. Wands, E.J. Copeland, Phys. Rep. 337, 343 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  2. C. Brans, R.H. Dicke, Phys. Rev. 124, 925 (1961)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. E. Alvarez, J. Conde, Mod. Phys. Lett. A17, 413 (2002)

    MathSciNet  ADS  Google Scholar 

  4. R. Colistete Jr, J.C. Fabris, N. Pinto-Neto, Phys. Rev. D57, 4707 (1998)

    MathSciNet  ADS  Google Scholar 

  5. J.C. Fabris, N. Pinto-Neto, A. Velasco, Class. Quantum Gravity 16, 3807 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. N. Pinto-Neto, in Quantum cosmology, Cosmology and Gravitation, ed. by M. Novello, Éditions Frontières, Gif-sur-Yvette (1996)

  7. F. Tipler, Phys. Rep. 137, 231 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  8. P.R. Holland, The Quantum Theory of Motion (Cambridge University Press, Cambridge, 1983)

    Google Scholar 

  9. B.F. Schutz, Phys. Rev. D2, 2762 (1970)

    MathSciNet  ADS  Google Scholar 

  10. B.F. Schutz, Phys. Rev. D4, 3559 (1971)

    ADS  Google Scholar 

  11. V.G. Lapchinskii, V.A. Rubakov, Theor. Math. Phys. 33, 1076 (1977)

    Article  Google Scholar 

  12. F.G. Alvarenga, J.C. Fabris, N.A. Lemos, G.A. Monerat, Gen. Relativ. Gravit. 34, 651 (2002)

    Article  MATH  Google Scholar 

  13. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products (Academic Press, San Diego, 2007)

    MATH  Google Scholar 

  14. F.T. Falciano, N. Pinto-Neto, Phys. Rev. D79, 023507 (2009)

    MathSciNet  ADS  Google Scholar 

  15. F.G. Alvarenga, A.B. Batist, J.C. Fabris, Int. J. Mod. Phys. D14, 291 (2005)

    ADS  Google Scholar 

  16. F.G. Alvarenga, A.B. Batista, J.C. Fabris, S.V.B. Gonçalves, Gen. Relativ. Gravit. 35, 1659 (2003)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

We thank the CNPq for partial financial support. JM and PVM were also supported by the grant CERN/FP/116373/2010. PVM is grateful to the CENTRA-IST for financial assistance. He also wants to thank the hospitality of the UFES, where this work was completed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Fabris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fabris, J.C., Falciano, F.T., Marto, J. et al. Dilaton Quantum Cosmology with a Schrödinger-like Equation. Braz J Phys 42, 475–481 (2012). https://doi.org/10.1007/s13538-012-0105-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-012-0105-y

Keywords

Navigation