Skip to main content
Log in

Model of Dilaton Gravity with Dynamical Boundary: Results and Prospects

  • Mathematical Modeling in Nuclear Technologies
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

We consider a model of two-dimensional dilaton gravity where the strong coupling region is cut off by the dynamical boundary making its causal structure similar to the spherically symmetric sector of the higher dimensional gravity. It is shown that the classical dynamics is fully determined by a single ordinary differential equation which possesses an infinite number of exact solutions. All solutions describe either the solutions describing the full reflection regime at subcritical energies or the black hole formation regime at larger energies. Black hole evaporation effect is taken into account by introduction of a new field mimicking the one-loop conformal anomaly. The semiclassical solutions become nonanalytic and ambiguous. It is proposed to perform analytic continuation of the subcritical solutions describing the full reflection through the complex domain to bypass singularities of real solutions describing collapse. It is supposed that this may lead to the correct saddle point solution saturating the path integral for gravitational scattering amplitude at enough energy for a black hole to form in the classical theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. W. Hawking, Phys. Rev. D 14, 2460 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  2. C. G. Callan, Jr., S. B. Giddings, J. A. Harvey, and A. Strominger, Phys. Rev. D 45, R1005 (1992).

    Article  ADS  Google Scholar 

  3. Y. Kitazawa, Nucl. Phys. B 453, 477 (1995).

    Article  ADS  Google Scholar 

  4. J. G. Russo, L. Susskind, and L. Thorlacius, Phys. Rev. D 46, 3444 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  5. J. G. Russo, L. Susskind, and L. Thorlacius, Phys. Rev. D 47, 533 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  6. E. P. Verlinde and H. L. Verlinde, Nucl. Phys. B 186, 43 (1993).

    Article  ADS  Google Scholar 

  7. T. D. Chung and H. L. Verlinde, Nucl. Phys. B 418, 305 (1994).

    Article  ADS  Google Scholar 

  8. L. Susskind and L. Thorlacius, Nucl. Phys. B 382, 123 (1992).

    Article  ADS  Google Scholar 

  9. J. M. Maldacena, Int. J. Theor. Phys. 38, 1113 (1999).

    Article  Google Scholar 

  10. A. Almheiri, D. Marolf, J. Polchinski, and J. Sully, J. High Energy Phys. 2013, 062 (2013).

    Article  Google Scholar 

  11. A. Ashtekar, V. Taveras, and M. Varadarajan, Phys. Rev. Lett. 100, 211302 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  12. S. Y. Khlebnikov, V. A. Rubakov, and P. G. Tinyakov, Nucl. Phys. B 350, 441 (1991).

    Article  ADS  Google Scholar 

  13. F. Bezrukov, D. Levkov, and S. Sibiryakov, J. High Energy Phys. 1512, 002 (2015).

    ADS  Google Scholar 

  14. M. Fitkevich, D. Levkov, and Y. Zenkevich, J. High Energy Phys. 2017, 108 (2017).

    Article  Google Scholar 

  15. A. Strominger, hep-th/9501071.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Fitkevich.

Additional information

Russian Text © The Author(s), 2018, published in Yadernaya Fizika i Inzhiniring, 2018, Vol. 9, No. 6, pp. 545–550.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fitkevich, M.D. Model of Dilaton Gravity with Dynamical Boundary: Results and Prospects. Phys. Atom. Nuclei 82, 1610–1615 (2019). https://doi.org/10.1134/S1063778819120093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778819120093

Keywords

Navigation