Skip to main content
Log in

Self-assembled structures formed during lipid digestion: characterization and implications for oral lipid-based drug delivery systems

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

There is increasing interest in the use of lipid-based formulations for the delivery of poorly water-soluble drugs. After ingestion of the formulation, exposure to the gastrointestinal environment results in dispersion and digestion processes, leading to the production of amphiphilic digestion products that form self-assembled structures in the aqueous environment of the intestine. These structures are crucial for the maintenance of drug in a solubilized state prior to absorption. This review describes the structural techniques used to study such systems, the structures formed in assembled ‘equilibrium’ compositions where components are combined in expected ratios representative of the endpoint of digestion, structures formed using dynamic in vitro ‘non-equilibrium’ digestion models where the composition and hence structures present change over time and observations from ex vivo aspirated samples. Possible future directions towards an improved understanding of the structural aspects of lipid digestion are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Humberstone AJ, Charman WN. Lipid-based vehicles for the oral delivery of poorly water soluble drugs. Adv Drug Deliv Rev. 1997;25(1):103–28.

    Article  CAS  Google Scholar 

  2. Gershanik T, Benita S. Self-dispersing lipid formulations for improving oral absorption of lipophilic drugs. Eur J Pharm Biopharm. 2000;50(1):179–88.

    Article  CAS  PubMed  Google Scholar 

  3. Kossena GA et al. Separation and characterization of the colloidal phases produced on digestion of common formulation lipids and assessment of their impact on the apparent solubility of selected poorly water-soluble drugs. J Pharm Sci. 2003;92(3):634–48.

    Article  CAS  PubMed  Google Scholar 

  4. Kossena GA et al. Influence of the intermediate digestion phases of common formulation lipids on the absorption of a poorly water-soluble drug. J Pharm Sci. 2005;94(3):481–92.

    Article  CAS  PubMed  Google Scholar 

  5. Sek L, Porter CJH, Charman WN. Characterisation and quantification of medium-chain and long-chain triglycerides and their in vitro digestion products by HPTLC coupled with in situ densitometric analysis. J Pharm Biomed Anal. 2001;25(3–4):651–61.

    Article  CAS  PubMed  Google Scholar 

  6. Sek L et al. Evaluation of the in vitro digestion profiles of long and medium-chain glycerides and the phase behaviour of their lipolytic products. J Pharm Pharmacol. 2002;54(1):29–41.

    Article  CAS  PubMed  Google Scholar 

  7. Kaukonen A et al. Drug solubilization behaviour during in vitro digestion of suspension formulations of poorly water-soluble drugs in triglyceride lipids. Pharm Res. 2004;21(2):254–60.

    Article  CAS  PubMed  Google Scholar 

  8. Kaukonen AM et al. Drug solubilization behaviour during in vitro digestion of simple triglyceride lipid solution formulations. Pharm Res. 2004;21(2):245–53.

    Article  CAS  PubMed  Google Scholar 

  9. Zangenberg NH et al. A dynamic in vitro lipolysis model II: evaluation of the model. Eur J Pharm Sci. 2001;14(3):237–44.

    Article  CAS  PubMed  Google Scholar 

  10. Zangenberg NH et al. A dynamic in vitro lipolysis model I. Controlling the rate of lipolysis by continuous addition of calcium. Eur J Pharm Sci. 2001;14(2):115–22.

    Article  CAS  PubMed  Google Scholar 

  11. Salentinig S et al. Transitions in the internal structure of lipid droplets during fat digestion. Soft Matter. 2011;7(2):650–61.

    Article  CAS  Google Scholar 

  12. Borovicka J et al. Regulation of gastric and pancreatic lipase secretion by CCK and cholinergic mechanisms in humans. Am J Physiol Gastrointest Liver Physiol. 1997;273(2):G374–80.

    CAS  Google Scholar 

  13. Moreau H et al. Immunocytolocalization of human gastric lipase in chief cells of the fundic mucosa. Histochemistry. 1989;91(5):419–23.

    Article  CAS  PubMed  Google Scholar 

  14. Thomson ABR et al. Intestinal aspects of lipid absorption: in review. Can J Physiol Pharmacol. 1989;67(3):179–91.

    Article  CAS  PubMed  Google Scholar 

  15. Hamosh M et al. Fat digestion in the newborn: characterisation of lipase in gastric aspirates of premature and term infants. J Clin Investig. 1981;67(3):838–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chapus C et al. Mechanism of pancreatic lipase action. 1. Interfacial activation of pancreatic lipase. Biochemistry. 1976;15(23):4980–7.

    Article  CAS  PubMed  Google Scholar 

  17. Widmaier EP. e.a., Vander's human physiology: the mechanisms of body function. 10th ed. New York: McGraw-Hill; 2006.

    Google Scholar 

  18. Persson E et al. Simultaneous assessment of lipid classes and bile acids in human intestinal fluid by solid-phase extraction and HPLC methods. J Lipid Res. 2007;48(1):242–51.

    Article  CAS  PubMed  Google Scholar 

  19. Kalantzi L et al. Canine intestinal contents vs. simulated media for the assessment of solubility of two weak bases in the human small intestinal contents. Pharm Res. 2006;23(6):1373–81.

    Article  CAS  PubMed  Google Scholar 

  20. Russell TL et al. Upper gastrointestinal ph in 79 healthy, elderly, North-American men and women. Pharm Res. 1993;10(2):187–96.

    Article  CAS  PubMed  Google Scholar 

  21. Evans DF et al. Measurement of gastrointestinal pH profiles in normal ambulant human subjects. Gut. 1988;29(8):1035–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Salentinig S, Sagalowicz L, Glatter O. Self-assembled structures and pK(a) value of oleic acid in systems of biological relevance. Langmuir. 2010;26(14):11670–9.

    Article  CAS  PubMed  Google Scholar 

  23. Vinarov Z et al. In vitro study of triglyceride lipolysis and phase distribution of the reaction products and cholesterol: effects of calcium and bicarbonate. Food Funct. 2012;3(11):1206–20.

    Article  CAS  PubMed  Google Scholar 

  24. Porter CJH, Trevaskis NL, Charman WN. Lipids and lipid-based formulations: optimising the oral delivery of lipophilic drugs. Nat Rev Drug Discov. 2007;6(3):231–48.

    Article  CAS  PubMed  Google Scholar 

  25. Reis P et al. Competition between lipases and monoglycerides at interfaces. Langmuir. 2008;24(14):7400–7.

    Article  CAS  PubMed  Google Scholar 

  26. Reis P et al. Adsorption of polar lipids at the water–oil interface. Langmuir. 2008;24(11):5781–6.

    Article  CAS  PubMed  Google Scholar 

  27. Chakraborty S et al. Lipid: an emerging platform for oral delivery of drugs with poor bioavailability. Eur J Pharm Biopharm. 2009;73(1):1–15.

    Article  CAS  PubMed  Google Scholar 

  28. Horter D, Dressman JB. Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract. Adv Drug Deliv Rev. 1997;25(1):3–14.

    Article  Google Scholar 

  29. Kleberg K et al. Biorelevant media simulating fed state intestinal fluids: colloid phase characterization and impact on solubilization capacity. J Pharm Sci. 2010;99(8):3522–32.

    Article  CAS  PubMed  Google Scholar 

  30. Porter CJH, Charman WN. In vitro assessment of oral lipid-based formulations. Adv Drug Deliv Rev. 2001;50:S127–47.

    Article  CAS  PubMed  Google Scholar 

  31. Pouton CW. Lipid formulations for oral administration of drugs: non-emulsifying, self-emulsifying and 'self-microemulsifying' drug delivery systems. Eur J Pharm Sci. 2000;11:S93–8.

    Article  CAS  PubMed  Google Scholar 

  32. Porter CJH et al. Susceptibility to lipase-mediated digestion reduces the oral bioavailability of danazol after administration as a medium-chain lipid-based microemulsion formulation. Pharm Res. 2004;21(8):1405–12.

    Article  CAS  PubMed  Google Scholar 

  33. Warren DB et al. Real time evolution of liquid crystalline nanostructure during the digestion of formulation lipids using synchrotron small-angle x-ray scattering. Langmuir. 2011;27(15):9528–34.

    Article  CAS  PubMed  Google Scholar 

  34. Porter CJH, Charman WN. Intestinal lymphatic drug transport: an update. Adv Drug Deliv Rev. 2001;50(1–2):61–80.

    Article  CAS  PubMed  Google Scholar 

  35. Folmer BM et al. Monocomponent hexa- and dodecaethylene glycol succinyl-tocopherol esters: self-assembly structures, cellular uptake and sensitivity to enzyme hydrolysis. Biochem Pharmacol. 2009;78(12):1464–74.

    Article  CAS  PubMed  Google Scholar 

  36. Tan A et al. Hybrid nanomaterials that mimic the food effect: controlling enzymatic digestion for enhanced oral drug absorption. Angew Chem Int Ed. 2012;51(22):5475–9.

    Article  CAS  Google Scholar 

  37. Tan A et al. Silica nanoparticles to control the lipase-mediated digestion of lipid-based oral delivery systems. Mol Pharm. 2010;7(2):522–32.

    Article  CAS  PubMed  Google Scholar 

  38. Small DM. A classification of biologic lipids based upon their interaction in aqueous systems. J Am Oil Chem Soc. 1968;45(3):108.

    Article  CAS  PubMed  Google Scholar 

  39. Pouton CW. Formulation of poorly water-soluble drugs for oral administration: physicochemical and physiological issues and the lipid formulation classification system. Eur J Pharm Sci. 2006;29(3–4):278–87.

    Article  CAS  PubMed  Google Scholar 

  40. Gursoy RN, Benita S. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed Pharmacother. 2004;58(3):173–82.

    Article  PubMed  CAS  Google Scholar 

  41. Gao P et al. Development of a supersaturable SEDDS (S-SEDDS) formulation of paclitaxel with improved oral bioavailability. J Pharm Sci. 2003;92(12):2386–98.

    Article  CAS  PubMed  Google Scholar 

  42. Gao P, Shi Y. Characterization of supersaturatable formulations for improved absorption of poorly soluble drugs. AAPS J. 2012;14(4):703–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Thomas N et al. In vitro and in vivo performance of novel supersaturated self-nanoemulsifying drug delivery systems (super-SNEDDS). J Control Release. 2012;160(1):25–32.

    Article  CAS  PubMed  Google Scholar 

  44. Kaasgaard T, Drummond CJ. Ordered 2-D and 3-D nanostructured amphiphile self-assembly materials stable in excess solvent. Phys Chem Chem Phys. 2006;8(43):4957–75.

    Article  CAS  PubMed  Google Scholar 

  45. Fong WK, Hanley T, Boyd BJ. Stimuli responsive liquid crystals provide 'on-demand' drug delivery in vitro and in vivo. J Control Release. 2009;135(3):218–26.

    Article  CAS  PubMed  Google Scholar 

  46. Yaghmur A et al. Effects of pressure and temperature on the self-assembled fully hydrated nanostructures of monoolein-oil systems. Langmuir. 2010;26(2):1177–85.

    Article  CAS  PubMed  Google Scholar 

  47. Israelachvili JN, Mitchell DJ, Ninham BW. Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc Faraday Trans Ii. 1976;72:1525–68.

    Article  Google Scholar 

  48. Yaghmur A et al. Emulsified microemulsions and oil-containing liquid crystalline phases. Langmuir. 2005;21(2):569–77.

    Article  CAS  PubMed  Google Scholar 

  49. Sagalowicz L et al. Monoglyceride self-assembly structures as delivery vehicles. Trends Food Sci Technol. 2006;17(5):204–14.

    Article  CAS  Google Scholar 

  50. Shearman GC et al. Inverse lyotropic phases of lipids and membrane curvature. J Phys Condens Matter. 2006;18(28):S1105–24.

    Article  CAS  PubMed  Google Scholar 

  51. Seddon JM et al. Inverse micellar phases of phospholipids and glycolipids. Phys Chem Chem Phys. 2000;2(20):4485–93.

    Article  CAS  Google Scholar 

  52. Schwarz US, Gompper G. Bending frustration of lipid-water mesophases based on cubic minimal surfaces. Langmuir. 2001;17(7):2084–96.

    Article  CAS  Google Scholar 

  53. Seddon JM et al. An Fd3m lyotropic cubic phase in a binary glycolipid/water system. Langmuir. 1996;12(22):5250–3.

    Article  CAS  Google Scholar 

  54. Patton JS, Carey MC. Watching fat digestion. Science. 1979;204(4389):145–8.

    Article  CAS  PubMed  Google Scholar 

  55. Staggers JE et al. Physical–chemical behavior of dietary and biliary lipids during intestinal digestion and absorption. 1. Phase behavior and aggregation states of model lipid systems patterned after aqueous duodenal contents of health adult human beings. Biochemistry. 1990;29(8):2028–40.

    Article  CAS  PubMed  Google Scholar 

  56. Kossena GA et al. A novel cubic phase of medium-chain lipid origin for the delivery of poorly water-soluble drugs. J Control Release. 2004;99(2):217–29.

    Article  CAS  PubMed  Google Scholar 

  57. Patton JS et al. The light-microscopy of triglyceride digestion. Food Microstruct. 1985;4(1):29–41.

    CAS  Google Scholar 

  58. Rigler MW, Honkanen RE, Patton JS. Visualisation by freeze fracture, in vitro and in vivo, of the products of fat digestion. J Lipid Res. 1986;27(8):836–57.

    CAS  PubMed  Google Scholar 

  59. Rigler MW, Patton JS. The production of liquid-crystalline product phases by pancreatic lipase in the absence of bile salts - a freeze-fracture study. Biochimica Et Biophysica Acta. 1983;751(3):444–54.

    Article  CAS  PubMed  Google Scholar 

  60. Hernell O, Staggers JE, Carey MC. Physical–chemical behavior of dietary and biliary lipids during intestinal digestion and absorption. 2 Phase-analysis and aggregation states of luminal lipids during duodenal fat digestion in healthy adult human beings. Biochemistry. 1990;29(8):2041–56.

    Article  CAS  PubMed  Google Scholar 

  61. Weibull C, Christiansson A, Carlemalm E. Extraction of membrane-lipids during fixation, dehydration and embedding of acholeplasma-laidlawii-cells for electron-microscopy. J Microsc Oxford. 1983;129:201–7.

    Article  CAS  Google Scholar 

  62. Dermier GB. An autoradiographic and biochemical study of oleic acid absorption by intestinal slices including determinations of lipid loss during preparation for electron microscopy. J Ultrastruct Res. 1968;22(3–4):312.

    Article  Google Scholar 

  63. Muller M, Meister N, Moor H. Freezing in a propane jet and its application in freeze-fracturing. Mikroskopie. 1980;36(5–6):129–40.

    CAS  PubMed  Google Scholar 

  64. Danino D. Cryo-TEM of soft molecular assemblies. Curr Opin Colloid Interface Sci. 2012;17(6):316–29.

    Article  CAS  Google Scholar 

  65. Gustafsson J et al. Phase behavior and aggregate structure in aqueous mixtures of sodium cholate and glycerol monooleate. J Colloid Interface Sci. 1999;211(2):326–35.

    Article  CAS  PubMed  Google Scholar 

  66. Fatouros DG et al. Structural development of self nano emulsifying drug delivery systems (SNEDDS) during in vitro lipid digestion monitored by small-angle x-ray scattering. Pharm Res. 2007;24(10):1844–53.

    Article  CAS  PubMed  Google Scholar 

  67. Fatouros DG, Bergenstahl B, Mullertz A. Morphological observations on a lipid-based drug delivery system during in vitro digestion. Eur J Pharm Sci. 2007;31(2):85–94.

    Article  CAS  PubMed  Google Scholar 

  68. Phan S, H.A., Mulet X, Waddington L, Prestidge C, Boyd B.J. Structural aspects of digestion of medium chain triglycerides studied in real time using sSAXS and cryo-TEM. Pharmaceutical Research; 2013. In press.

  69. Yaghmur A, Glatter O. Characterization and potential applications of nanostructured aqueous dispersions. Adv Colloid Interface Sci. 2009;147–148:333–42.

    Article  PubMed  CAS  Google Scholar 

  70. Tan G et al. Cryo-field emission scanning electron microscopy imaging of a rigid surfactant mesophase. Langmuir. 2008;24(19):10621–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Fong W-K et al. Controlling the nanostructure of gold nanorod–lyotropic liquid-crystalline hybrid materials using near-infrared laser irradiation. Langmuir. 2012;28(40):14450–60.

    Article  CAS  PubMed  Google Scholar 

  72. Rizwan SB et al. Characterisation of bicontinuous cubic liquid crystalline systems of phytantriol and water using cryo field emission scanning electron microscopy (cryo FESEM). Micron. 2007;38(5):478–85.

    Article  CAS  PubMed  Google Scholar 

  73. Boyd BJ et al. Self-assembled geometric liquid-crystalline nanoparticles imaged in three dimensions: hexosomes are not necessarily flat hexagonal prisms. Langmuir. 2007;23(25):12461–4.

    Article  CAS  PubMed  Google Scholar 

  74. Svaerd M et al. Micelles, vesicles and liquid crystals in the monoolein-sodium taurocholate-water system: phase behavior, NMR, self-diffusion, and quasi-elastic light scattering studies. J Phys Chem. 1988;92(8):2261–70.

    Article  CAS  Google Scholar 

  75. Koppel DE. Analysis of macromolecular polydispersity in intensity correlation spectroscopy—method of cumulants. J Chem Phys. 1972;57(11):4814.

    Article  CAS  Google Scholar 

  76. Berne BJP. R, Dynamic Light Scattering. New York: Wiley-Interscience; 1976.

    Google Scholar 

  77. Hyde S. Handbook of Applied Surface and Colloid Chemistry, ed. K. Holmberg: John Wiley & Sons, Ltd; 2001. 299–332.

  78. Bragg WL, Thomson JJ. The diffraction of short electromagnetic waves by a crystal. Proc Camb Philos Soc. 1914;17:43–57.

    Google Scholar 

  79. Seddon J.M et al. Structural Studies of Liquid Crystals by X-Ray Diffraction, in Handbook of Liquid Crystals Set. Wiley-VCH Verlag GmbH; 2008. p. 635–679.

  80. Borne J, Nylander T, Ehan A. Effect of lipase on different lipid liquid crystalline phases formed by oleic acid-based acylglycerols in aqueous systems. Langmuir. 2002;18(23):8972–81.

    Article  CAS  Google Scholar 

  81. Kossena GA et al. Probing drug solubilization patterns in the gastrointestinal tract after administration of lipid-based delivery systems: a phase diagram approach. J Pharm Sci. 2004;93(2):332–48.

    Article  CAS  PubMed  Google Scholar 

  82. Westerman PW. Physicochemical characterization of a model digestive mixture by 2H NMR. J Lipid Res. 1995;36(12):2478–92.

    CAS  PubMed  Google Scholar 

  83. Boetker J et al. Structural elucidation of rapid solution-mediated phase transitions in pharmaceutical solids using in situ synchrotron SAXS/WAXS. Mol Pharm. 2012;9(9):2787–91.

    Article  CAS  PubMed  Google Scholar 

  84. Fatouros DG et al. Physicochemical characterization of simulated intestinal fed-state fluids containing lyso-phosphatidylcholine and cholesterol. Dissolution Technol. 2009;16(3):47–50.

    Article  CAS  Google Scholar 

  85. Caffrey M. The study of lipid phase-transition kinetics by time-resolved x-ray-diffraction. Annu Rev Biophys Biophys Chem. 1989;18:159–86.

    Article  CAS  PubMed  Google Scholar 

  86. Lopez-Rubio A, Gilbert EP. Neutron scattering: a natural tool for food science and technology research. Trends Food Sci Technol. 2009;20(11–12):576–86.

    Article  CAS  Google Scholar 

  87. Small DM, Penkett SA, Chapman D. Studies on simple and mixed bile salt micelles by nuclear magnetic resonance spectroscopy. Biochimica Et Biophysica Acta. 1969;176(1):178.

    Article  CAS  PubMed  Google Scholar 

  88. Ljusbergwahren H, Larsson K. A Raman-spectroscopy study of mixed bile salt–monoglyceride micelles. Chem Phys Lipids. 1981;28(1):25–32.

    Article  CAS  Google Scholar 

  89. Day JP et al. Label-free imaging of lipophilic bioactive molecules during lipid digestion by multiplex coherent anti-stokes Raman scattering microspectroscopy. J Am Chem Soc. 2010;132(24):8433–9.

    Article  CAS  PubMed  Google Scholar 

  90. Rube A, Klein S, Mader K. Monitoring of in vitro fat digestion by electron paramagnetic resonance spectroscopy. Pharm Res. 2006;23(9):2024–9.

    Article  PubMed  CAS  Google Scholar 

  91. Muller K. Structural aspects of bile salt-lecithin mixed micelles. Hepatology. 1984;4(5):S134–7.

    Article  Google Scholar 

  92. Walter A et al. Intermediate structures in the cholate–phosphatidylcholine vesicle micelle transition. Biophys J. 1991;60(6):1315–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hofmann AF. Molecular association in fat digestion—interaction in bulk of monoolein oleic acid and sodium oleate with dilute micellar bile salt solutions. Adv Chem Ser. 1968;84:53.

    Article  Google Scholar 

  94. Fatouros DG et al. Colloidal structures in media simulating intestinal fed state conditions with and without lipolysis products. Pharm Res. 2009;26(2):361–74.

    Article  CAS  PubMed  Google Scholar 

  95. Borne J, Nylander T, Khan A. Phase behavior and aggregate formation for the aqueous monoolein system mixed with sodium oleate and oleic acid. Langmuir. 2001;17(25):7742–51.

    Article  CAS  Google Scholar 

  96. Borne J, Nylander T, Khan A. Microscopy, SAXD, and NMR studies of phase behavior of the monoolein–diolein water system. Langmuir. 2000;16(26):10044–54.

    Article  CAS  Google Scholar 

  97. Larsson K, Gabrielsson K, Lundberg B. Phase behavior of some aqueous systems involving monoglycerides, cholesterol and bile acids. J Sci Food Agric. 1978;29(10):909–14.

    Article  CAS  Google Scholar 

  98. Lindstrom M et al. Aqueous lipid phases of relevance to intestinal fat digestion and absorption. Lipids. 1981;16(10):749–54.

    Article  CAS  PubMed  Google Scholar 

  99. Hjelm RP et al. Structure of conjugated bile salt-fatty acid-monoglyceride mixed colloids: studies by small-angle neutron scattering. J Phys Chem B. 2000;104(2):197–211.

    Article  CAS  Google Scholar 

  100. Cohen DE, Angelico M, Carey MC. Structural alterations in lecithin-cholesterol vesicles following interactions with monomeric and micellar bile salts: physical–chemical basis for sub-selection of biliary lecithin species and aggregative states of biliary lipids during bile formation. J Lipid Res. 1990;31(1):55–70.

    CAS  PubMed  Google Scholar 

  101. Embleton JK, Pouton CW. Structure and function of gastrointestinal lipases. Adv Drug Deliv Rev. 1997;25(1):15–32.

    Article  CAS  Google Scholar 

  102. Qiu H, Caffrey M. The phase diagram of the monoolein/water system: metastability and equilibrium aspects. Biomaterials. 2000;21(3):223–34.

    Article  CAS  PubMed  Google Scholar 

  103. Lutton ES. Phase behavior of aqueous systems of monoglycerides. J Am Oil Chem Soc. 1965;42(12):1068.

    Article  CAS  PubMed  Google Scholar 

  104. Borne J, Nylander T, Khan A. Vesicle formation and other structures in aqueous dispersions of monoolein and sodium oleate. J Colloid Interface Sci. 2003;257(2):310–20.

    Article  CAS  PubMed  Google Scholar 

  105. Hofmann AF, Borgstrom B. Intraluminal phase of fat digestion in man—lipid content of micellar + oil phases of intestinal content obtained during fat digestion + absorption. J Clin Investig. 1964;43(2):247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mazer NA, Benedek GB, Carey MC. Quasielastic light-scattering studies of aqueous biliary lipid systems. Mixed micelle formation in bile salt–lecithin solutions. Biochemistry. 1980;19(4):601–15.

    Article  CAS  PubMed  Google Scholar 

  107. Schurtenberger P, Mazer N, Kanzig W. Micelle to vesicle transition in aqueous solutions of bile-salt and lecithin. J Phys Chem. 1985;89(6):1042–9.

    Article  CAS  Google Scholar 

  108. Long MA, Kaler EW, Lee SP. Structural characterization of the micelle–vesicle transition in lecithin bile salt solutions. Biophys J. 1994;67(4):1733–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hjelm RP, Thiyagarajan P, Alkan H. A small-angle neutron-scattering study of the effects of dilution on particle morphology in mixtures of glycocholate and lecithin. J Appl Crystallogr. 1988;21:858–63.

    Article  CAS  Google Scholar 

  110. Vinson PK, Talmon Y, Walter A. Vesicle–micelle transition of phosphatidylcholine and octyl glucoside elucidated by cryo-transmission electron microscopy. Biophys J. 1989;56(4):669–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Armand M et al. Physicochemical characteristics of emulsions during fat digestion in human stomach and duodenum. Am J Physiol Gastrointest Liver Physiol. 1996;271(1):G172–83.

    CAS  Google Scholar 

  112. Schulze K. Imaging and modelling of digestion in the stomach and the duodenum. Neurogastroenterol Motil. 2006;18(3):172–83.

    Article  CAS  PubMed  Google Scholar 

  113. Kalantzi L et al. Characterization of the human upper gastrointestinal contents under conditions simulating bioavailability/bioequivalence studies. Pharm Res. 2006;23(1):165–76.

    Article  CAS  PubMed  Google Scholar 

  114. Christensen JO et al. Solubilisation of poorly water-soluble drugs during in vitro lipolysis of medium- and long-chain triacylglycerols. Eur J Pharm Sci. 2004;23(3):287–96.

    Article  CAS  PubMed  Google Scholar 

  115. Porter CJH et al. Use of in vitro lipid digestion data to explain the in vivo performance of triglyceride-based oral lipid formulations of poorly water-soluble drugs: studies with halofantrine. J Pharm Sci. 2004;93(5):1110–21.

    Article  CAS  PubMed  Google Scholar 

  116. Gargouri Y, Moreau H, Verger R. Gastric lipases: biochemical and physiological studies. Biochimica Et Biophysica Acta. 1989;1006(3):255–71.

    Article  CAS  PubMed  Google Scholar 

  117. Dressman JB et al. Upper gastrointestinal (GI) pH in young, healthy men and women. Pharm Res. 1990;7(7):756–61.

    Article  CAS  PubMed  Google Scholar 

  118. Larsen AT, Sassene P, Mullertz A. In vitro lipolysis models as a tool for the characterization of oral lipid and surfactant-based drug delivery systems. Int J Pharm. 2011;417(1–2):245–55.

    Article  CAS  PubMed  Google Scholar 

  119. Williams HD et al. Toward the establishment of standardised in vitro tests for lipid-based formulations, part 1: method parameterization and comparison of in vitro digestion profiles across a range of representative formulations. J Pharm Sci. 2012;101(9):3360–80.

    Article  CAS  PubMed  Google Scholar 

  120. Dong YD, Boyd BJ. Applications of X-ray scattering in pharmaceutical science. Int J Pharm. 2011;417(1–2):101–11.

    Article  CAS  PubMed  Google Scholar 

  121. Mullertz A et al. Insights into intermediate phases of human intestinal fluids visualised by atomic force microscopy and cryo-transmission electron microscopy ex vivo. Mol Pharm. 2012;9(2):237–47.

    Article  CAS  PubMed  Google Scholar 

  122. Armand M et al. Digestion and absorption of 2 fat emulsions with different droplet sizes in the human digestive tract. Am J Clin Nutr. 1999;70(6):1096–106.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funding is acknowledged from the Australian Research Council under the Discovery Projects scheme DP120104032. BJB is a recipient of an Australian Research Council Future Fellowship (FT120100697).

Conflict of interest

The authors collectively declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben J. Boyd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phan, S., Salentinig, S., Prestidge, C.A. et al. Self-assembled structures formed during lipid digestion: characterization and implications for oral lipid-based drug delivery systems. Drug Deliv. and Transl. Res. 4, 275–294 (2014). https://doi.org/10.1007/s13346-013-0168-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-013-0168-5

Keywords

Navigation