Skip to main content
Log in

The Precipitation Behavior of Poorly Water-Soluble Drugs with an Emphasis on the Digestion of Lipid Based Formulations

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

An increasing number of newly discovered drugs are poorly water-soluble and the use of natural and synthetic lipids to improve the oral bioavailability of these drugs by utilizing the digestion pathway in-vivo has proved an effective formulation strategy. The mechanisms responsible for lipid digestion and drug solubilisation during gastrointestinal transit have been explored in detail, but the implications of drug precipitation beyond the potential adverse effect on bioavailability have received attention only in recent years. Specifically, these implications are that different solid forms of drug on precipitation may affect the total amount of drug absorbed in-vivo through their different physico-chemical properties, and the possibility that the dynamic environment of the small intestine may afford re-dissolution of precipitated drug if present in a high-energy form. This review describes the events that lead to drug precipitation during the dispersion and digestion of lipid based formulations, common methods used to inhibit precipitation, as well as conventional and newly emerging characterization techniques for studying the solid state form of the precipitated drug. Moreover, selected case studies are discussed where drug precipitation has ensued from the digestion of lipid based formulations, as well as the apparent link between drug ionisability and altered solid forms on precipitation, culminating in a discussion about the importance of the solid form on precipitation with relevance to the total drug absorbed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

LBDDS:

Lipid based drug delivery systems

BCS:

Biopharmaceutics classification system

LFCS:

Lipid formulation classification system

SRM :

Maximum supersaturation ratio

XRD:

X-ray diffraction

CPLM:

Crossed polarized light microscopy

DSC:

Differential scanning calorimetry

FTIR:

Fourier transform infrared spectroscopy

USP:

United States pharmacopeia

PPI:

Polymeric precipitation inhibitor

PVP:

Polyvinylpyrrolidone

HPMC:

Hydroxypropylmethyl cellulose

MC:

Medium chain

LC:

Long chain

SNEDDS:

Self nano-emulsifying drug delivery system

SMEDDS:

Self micro-emulsifying drug delivery system

SAXS:

Small-angle x-ray scattering

NMR:

Nuclear magnetic resonance

REFERENCES

  1. Gursoy RN, Benita S. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed Pharmacother. 2004;58(3):173–82.

    Article  PubMed  Google Scholar 

  2. Chen S, Dudhedia MS, Wang Z, Darrington RT, Tamblyn T, Smoliga JA, et al. Drug-excipient complexation in lipid based delivery systems: an investigation of the Tipranavir-1,3-dioctanolyglycerol complex. J Pharm Sci. 2009;98(5):1732–43.

    Article  CAS  PubMed  Google Scholar 

  3. Ku MS. Use of the biopharmaceutical classification system in early drug development. AAPS J. 2008;10(1):208–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Lindenberg M, Kopp S, Dressman JB. Classification of orally administered drugs on the World Health Organization Model list of Essential Medicines according to the biopharmaceutics classification system. Eur J Pharm Biopharm. 2004;58(2):265–78.

    Article  PubMed  Google Scholar 

  5. Gupta S, Kesarla R, Omri A. Formulation strategies to improve the bioavailability of poorly absorbed drugs with special emphasis on self-emulsifying systems. ISRN Pharm. 2013;2013:848043.

    PubMed Central  PubMed  Google Scholar 

  6. Amidon GL, Lennernas H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12(3):413–20.

    Article  CAS  PubMed  Google Scholar 

  7. Bevernage J, Brouwers J, Annaert P, Augustijns P. Drug precipitation-permeation interplay: supersaturation in an absorptive environment. Eur J Pharm Biopharm. 2012;82(2):424–8.

    Article  CAS  PubMed  Google Scholar 

  8. Lipinski CA. Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods. 2000;44(1):235–49.

    Article  CAS  PubMed  Google Scholar 

  9. Pouton CW. Formulation of poorly water-soluble drugs for oral administration: physicochemical and physiological issues and the lipid formulation classification system. Eur J Pharm Sci. 2006;29(3–4):278–87.

    Article  CAS  PubMed  Google Scholar 

  10. MacGregor KJ, Embleton JK, Lacy JE, Perry EA, Solomon LJ, Seager H, et al. Influence of lipolysis on drug absorption from the gastro-intestinal tract. Adv Drug Deliv Rev. 1997;25(1):33–46.

    Article  CAS  Google Scholar 

  11. Dokoumetzidis A, Macheras P. A century of dissolution research: from Noyes and Whitney to the biopharmaceutics classification system. Int J Pharm. 2006;321(1–2):1–11.

    Article  CAS  PubMed  Google Scholar 

  12. Kawabata Y, Wada K, Nakatani M, Yamada S, Onoue S. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications. Int J Pharm. 2011;420(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  13. Grohganz H, Priemel PA, Lobmann K, Nielsen LH, Laitinen R, Mullertz A, et al. Refining stability and dissolution rate of amorphous drug formulations. Expert Opin Drug Deliv. 2014;11(6):977–89.

    Article  CAS  PubMed  Google Scholar 

  14. Mohsin K, Long MA, Pouton CW. Design of lipid-based formulations for oral administration of poorly water-soluble drugs: precipitation of drug after dispersion of formulations in aqueous solution. J Pharm Sci. 2009;98(10):3582–95.

    Article  CAS  PubMed  Google Scholar 

  15. Mu H, Holm R, Mullertz A. Lipid-based formulations for oral administration of poorly water-soluble drugs. Int J Pharm. 2013;453(1):215–24.

    Article  CAS  PubMed  Google Scholar 

  16. O’Driscoll CM, Griffin BT. Biopharmaceutical challenges associated with drugs with low aqueous solubility--the potential impact of lipid-based formulations. Adv Drug Deliv Rev. 2008;60(6):617–24.

    Article  PubMed  Google Scholar 

  17. Porter CJ, Pouton CW, Cuine JF, Charman WN. Enhancing intestinal drug solubilisation using lipid-based delivery systems. Adv Drug Deliv Rev. 2008;60(6):673–91.

    Article  CAS  PubMed  Google Scholar 

  18. Porter CJ, Trevaskis NL, Charman WN. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov. 2007;6(3):231–48.

    Article  CAS  PubMed  Google Scholar 

  19. Pouton CW. Lipid formulations for oral administration of drugs: non-emulsifying, self-emulsifying and ‘self-microemulsifying’ drug delivery systems. Eur J Pharm Sci. 2000;11 Suppl 2:S93–8.

    Article  CAS  PubMed  Google Scholar 

  20. Williams HD, Trevaskis NL, Yeap YY, Anby MU, Pouton CW, Porter CJ. Lipid-based formulations and drug supersaturation: harnessing the unique benefits of the lipid digestion/absorption pathway. Pharm Res. 2013;30(12):2976–92.

    Article  CAS  PubMed  Google Scholar 

  21. Liao TH, Hamosh P, Hamosh M. Fat digestion by lingual lipase: mechanism of lipolysis in the stomach and upper small intestine. Pediatr Res. 1984;18(5):402–9.

    Article  CAS  PubMed  Google Scholar 

  22. Holm R, Mullertz A, Mu H. Bile salts and their importance for drug absorption. Int J Pharm. 2013;453(1):44–55.

    Article  CAS  PubMed  Google Scholar 

  23. Phan S, Hawley A, Mulet X, Waddington L, Prestidge CA, Boyd BJ. Structural aspects of digestion of medium chain triglycerides studied in real time using sSAXS and Cryo-TEM. Pharm Res. 2013;30(12):3088–100.

    Article  CAS  PubMed  Google Scholar 

  24. Trevaskis NL, Porter CJ, Charman WN. Bile increases intestinal lymphatic drug transport in the fasted rat. Pharm Res. 2005;22(11):1863–70.

    Article  CAS  PubMed  Google Scholar 

  25. Yeap YY, Trevaskis NL, Quach T, Tso P, Charman WN, Porter CJ. Intestinal bile secretion promotes drug absorption from lipid colloidal phases via induction of supersaturation. Mol Pharm. 2013;10(5):1874–89.

    Article  CAS  PubMed  Google Scholar 

  26. Kossena GA, Charman WN, Boyd BJ, Porter CJ. Influence of the intermediate digestion phases of common formulation lipids on the absorption of a poorly water-soluble drug. J Pharm Sci. 2005;94(3):481–92.

    Article  CAS  PubMed  Google Scholar 

  27. van Mourik ID, Thomson M, Kelly DA. Comparison of pharmacokinetics of Neoral and Sandimmune in stable pediatric liver transplant recipients. Liver Transpl Surg. 1999;5(2):107–11.

    Article  PubMed  Google Scholar 

  28. Han SF, Yao TT, Zhang XX, Gan L, Zhu C, Yu HZ, et al. Lipid-based formulations to enhance oral bioavailability of the poorly water-soluble drug anethol trithione: effects of lipid composition and formulation. Int J Pharm. 2009;379(1):18–24.

    Article  CAS  PubMed  Google Scholar 

  29. Humberstone AJ, Charman WN. Lipid-based vehicles for the oral delivery of poorly water soluble drugs. Adv Drug Deliv Rev. 1997;25(1):103–28.

    Article  CAS  Google Scholar 

  30. Chakrabarti S, Belpaire FM. Biovailability of phenytoin in lipid containing dosage forms in rats. J Pharm Pharmacol. 1978;30(5):330–1.

    Article  CAS  PubMed  Google Scholar 

  31. Carrigan PJ, Bates TR. Biopharmaceutics of drugs administered in lipid-containing dosage forms. I. GI absorption of griseofulvin from an oil-in-water emulsion in the rat. J Pharm Sci. 1973;62(9):1476–9.

    Article  CAS  PubMed  Google Scholar 

  32. Porter CJ, Kaukonen AM, Taillardat-Bertschinger A, Boyd BJ, O’Connor JM, Edwards GA, et al. Use of in vitro lipid digestion data to explain the in vivo performance of triglyceride-based oral lipid formulations of poorly water-soluble drugs: studies with halofantrine. J Pharm Sci. 2004;93(5):1110–21.

    Article  CAS  PubMed  Google Scholar 

  33. Brouwers J, Brewster ME, Augustijns P. Supersaturating drug delivery systems: the answer to solubility-limited oral bioavailability? J Pharm Sci. 2009;98(8):2549–72.

    Article  CAS  PubMed  Google Scholar 

  34. Anby MU, Williams HD, McIntosh M, Benameur H, Edwards GA, Pouton CW, et al. Lipid digestion as a trigger for supersaturation: evaluation of the impact of supersaturation stabilization on the in vitro and in vivo performance of self-emulsifying drug delivery systems. Mol Pharm. 2012;9(7):2063–79.

    Article  CAS  PubMed  Google Scholar 

  35. Arnold YE, Imanidis G, Kuentz MT. Advancing in-vitro drug precipitation testing: new process monitoring tools and a kinetic nucleation and growth model. J Pharm Pharmacol. 2011;63(3):333–41.

    Article  CAS  PubMed  Google Scholar 

  36. Warren DB, Benameur H, Porter CJ, Pouton CW. Using polymeric precipitation inhibitors to improve the absorption of poorly water-soluble drugs: a mechanistic basis for utility. J Drug Target. 2010;18(10):704–31.

    Article  CAS  PubMed  Google Scholar 

  37. Lindfors L, Forssen S, Westergren J, Olsson U. Nucleation and crystal growth in supersaturated solutions of a model drug. J Colloid Interface Sci. 2008;325(2):404–13.

    Article  CAS  PubMed  Google Scholar 

  38. Bevernage J, Brouwers J, Brewster ME, Augustijns P. Evaluation of gastrointestinal drug supersaturation and precipitation: strategies and issues. Int J Pharm. 2013;453(1):25–35.

    Article  CAS  PubMed  Google Scholar 

  39. Kostewicz ES, Wunderlich M, Brauns U, Becker R, Bock T, Dressman JB. Predicting the precipitation of poorly soluble weak bases upon entry in the small intestine. J Pharm Pharmacol. 2004;56(1):43–51.

    Article  CAS  PubMed  Google Scholar 

  40. Stillhart C, Durr D, Kuentz M. Toward an improved understanding of the precipitation behavior of weakly basic drugs from oral lipid-based formulations. J Pharm Sci. 2014.

  41. Yeap YY, Trevaskis NL, Porter CJ. The potential for drug supersaturation during intestinal processing of lipid-based formulations may be enhanced for basic drugs. Mol Pharm. 2013;10(7):2601–15.

    Article  CAS  PubMed  Google Scholar 

  42. Yeap YY, Trevaskis NL, Porter CJ. Lipid absorption triggers drug supersaturation at the intestinal unstirred water layer and promotes drug absorption from mixed micelles. Pharm Res. 2013;30(12):3045–58.

    Article  CAS  PubMed  Google Scholar 

  43. Kashchiev D. Forms and applications of the nucleation theorem. J Chem Phys. 2006;125(1):014502.

    Article  PubMed  Google Scholar 

  44. Horn D, Rieger J. Organic nanoparticles in the aqueous phase-theory, experiment, and use. Angew Chem Int Ed Engl. 2001;40(23):4330–61.

    Article  CAS  PubMed  Google Scholar 

  45. Rodriguez-Hornedo N, Murphy D. Significance of controlling crystallization mechanisms and kinetics in pharmaceutical systems. J Pharm Sci. 1999;88(7):651–60.

    Article  CAS  PubMed  Google Scholar 

  46. JW, M, Crystallisation. Oxford: Butterworth-Heinemann; 2001.

  47. Dressman JB, Berardi RR, Dermentzoglou LC, Russell TL, Schmaltz SP, Barnett JL, et al. Upper gastrointestinal (GI) pH in young, healthy men and women. Pharm Res. 1990;7(7):756–61.

    Article  CAS  PubMed  Google Scholar 

  48. Gargouri Y, Moreau H, Verger R. Gastric lipases: biochemical and physiological studies. Biochim Biophys Acta. 1989;1006(3):255–71.

    Article  CAS  PubMed  Google Scholar 

  49. Zangenberg NH, Mullertz A, Kristensen HG, Hovgaard L. A dynamic in vitro lipolysis model. I. Controlling the rate of lipolysis by continuous addition of calcium. Eur J Pharm Sci. 2001;14(2):115–22.

    Article  CAS  PubMed  Google Scholar 

  50. Sek L, Porter CJ, Kaukonen AM, Charman WN. Evaluation of the in-vitro digestion profiles of long and medium chain glycerides and the phase behaviour of their lipolytic products. J Pharm Pharmacol. 2002;54(1):29–41.

    Article  CAS  PubMed  Google Scholar 

  51. Devraj R, Williams HD, Warren DB, Mullertz A, Porter CJ, Pouton CW. In vitro digestion testing of lipid-based delivery systems: calcium ions combine with fatty acids liberated from triglyceride rich lipid solutions to form soaps and reduce the solubilization capacity of colloidal digestion products. Int J Pharm. 2013;441(1–2):323–33.

    Article  CAS  PubMed  Google Scholar 

  52. Shono Y, Jantratid E, Dressman JB. Precipitation in the small intestine may play a more important role in the in vivo performance of poorly soluble weak bases in the fasted state: case example nelfinavir. Eur J Pharm Biopharm. 2011;79(2):349–56.

    Article  CAS  PubMed  Google Scholar 

  53. Thomas N, Richter K, Pedersen TB, Holm R, Mullertz A, Rades T. In Vitro lipolysis data does not adequately predict the in vivo performance of lipid-based drug delivery systems containing fenofibrate. AAPS J. 2014.

  54. Williams HD, Sassene P, Kleberg K, Bakala-N’Goma JC, Calderone M, Jannin V, et al. Toward the establishment of standardized in vitro tests for lipid-based formulations, part 1: method parameterization and comparison of in vitro digestion profiles across a range of representative formulations. J Pharm Sci. 2012;101(9):3360–80.

    Article  CAS  PubMed  Google Scholar 

  55. Williams HD, Anby MU, Sassene P, Kleberg K, Bakala-N’Goma JC, Calderone M, et al. Toward the establishment of standardized in vitro tests for lipid-based formulations. 2. The effect of bile salt concentration and drug loading on the performance of type I, II, IIIA, IIIB, and IV formulations during in vitro digestion. Mol Pharm. 2012;9(11):3286–300.

    Article  CAS  PubMed  Google Scholar 

  56. Williams HD, Sassene P, Kleberg K, Calderone M, Igonin A, Jule E, et al. Toward the establishment of standardized in vitro tests for lipid-based formulations, part 3: understanding supersaturation versus precipitation potential during the in vitro digestion of type I, II, IIIA, IIIB and IV lipid-based formulations. Pharm Res. 2013;30(12):3059–76.

    Article  CAS  PubMed  Google Scholar 

  57. Thomas N, Holm R, Rades T, Mullertz A. Characterising lipid lipolysis and its implication in lipid-based formulation development. AAPS J. 2012;14(4):860–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Salentinig S, Salentinig S, Tangso KJ, Hawley A, Boyd BJ. pH-driven colloidal transformations based on the vasoactive drug nicergoline. Langmuir. 2014;30(49):14776–81.

    Article  CAS  PubMed  Google Scholar 

  59. Arnold YE, Imanidis G, Kuentz M. Study of drug concentration effects on in vitro lipolysis kinetics in medium-chain triglycerides by considering oil viscosity and surface tension. Eur J Pharm Sci. 2011;44(3):351–8.

    Article  CAS  PubMed  Google Scholar 

  60. Harris KD. Powder diffraction crystallography of molecular solids. Top Curr Chem. 2012;315:133–77.

    Article  CAS  PubMed  Google Scholar 

  61. RA, C. Chapter 2: polarized light microscopy, in pharmaceutical microscopy. 2011. p. 321p. 139 illus, 102 illus. in color.

  62. Sassene PJ, Knopp MM, Hesselkilde JZ, Koradia V, Larsen A, Rades T, et al. Precipitation of a poorly soluble model drug during in vitro lipolysis: characterization and dissolution of the precipitate. J Pharm Sci. 2010;99(12):4982–91.

    Article  CAS  PubMed  Google Scholar 

  63. Carstensen JT, Lai TY, Prasad VK. USP dissolution IV: comparison of methods. J Pharm Sci. 1978;67(9):1303–7.

    Article  CAS  PubMed  Google Scholar 

  64. Thomas N, Holm R, Mullertz A, Rades T. In vitro and in vivo performance of novel supersaturated self-nanoemulsifying drug delivery systems (super-SNEDDS). J Control Release. 2012;160(1):25–32.

    Article  CAS  PubMed  Google Scholar 

  65. Savolainen M, Kogermann K, Heinz A, Aaltonen J, Peltonen L, Strachan C, et al. Better understanding of dissolution behaviour of amorphous drugs by in situ solid-state analysis using Raman spectroscopy. Eur J Pharm Biopharm. 2009;71(1):71–9.

    Article  CAS  PubMed  Google Scholar 

  66. Verdonck E, Schaap K, Thomas LC. A discussion of the principles and applications of Modulated Temperature DSC (MTDSC). Int J Pharm. 1999;192(1):3–20.

    Article  CAS  PubMed  Google Scholar 

  67. Gill P, Moghadam TT, Ranjbar B. Differential scanning calorimetry techniques: applications in biology and nanoscience. J Biomol Tech. 2010;21(4):167–93.

    PubMed Central  PubMed  Google Scholar 

  68. Patel DD, Anderson BD. Effect of precipitation inhibitors on indomethacin supersaturation maintenance: mechanisms and modeling. Mol Pharm. 2014;11(5):1489–99.

    Article  CAS  PubMed  Google Scholar 

  69. Warren DB, Bergstrom CA, Benameur H, Porter CJ, Pouton CW. Evaluation of the structural determinants of polymeric precipitation inhibitors using solvent shift methods and principle component analysis. Mol Pharm. 2013;10(8):2823–48.

    Article  CAS  PubMed  Google Scholar 

  70. DiNunzio JC, Miller DA, Yang W, McGinity JW, Williams 3rd RO. Amorphous compositions using concentration enhancing polymers for improved bioavailability of itraconazole. Mol Pharm. 2008;5(6):968–80.

    Article  CAS  PubMed  Google Scholar 

  71. Rupprecht H, Ziller KH. Characterization of the crystallization behavior of poorly soluble drugs in suspensions. Pharmazie. 1981;36(4):298.

    CAS  PubMed  Google Scholar 

  72. Augustijns P, Brewster ME. Supersaturating drug delivery systems: fast is not necessarily good enough. J Pharm Sci. 2012;101(1):7–9.

    Article  CAS  PubMed  Google Scholar 

  73. Machefer S, Huddar MM, Schnitzlein K. Effect of polymer admixtures on the growth habit of ionic crystals. Study on crystal growth kinetics of potassium dihydrogen phosphate in water/polyol mixtures. J Cryst Growth. 2008;310(24):5347–56.

    Article  CAS  Google Scholar 

  74. Raghavan SL, Trividic A, Davis AF, Hadgraft J. Crystallization of hydrocortisone acetate: influence of polymers. Int J Pharm. 2001;212(2):213–21.

    Article  CAS  PubMed  Google Scholar 

  75. Gao P, Akrami A, Alvarez F, Hu J, Li L, Ma C, et al. Characterization and optimization of AMG 517 Supersaturatable Self-Emulsifying Drug Delivery System (S-SEDDS) for improved oral absorption. J Pharm Sci. 2009;98(2):516–28.

    Article  CAS  PubMed  Google Scholar 

  76. Psachoulias D, Vertzoni M, Goumas K, Kalioras V, Beato S, Butler J, et al. Precipitation in and supersaturation of contents of the upper small intestine after administration of two weak bases to fasted adults. Pharm Res. 2011;28(12):3145–58.

    Article  CAS  PubMed  Google Scholar 

  77. Carlert S, Akesson P, Jerndal G, Lindfors L, Lennernas H. Abrahamsson, B, In vivo dog intestinal precipitation of mebendazole: a basic BCS class II drug. Mol Pharm. 2012;9(10):2903–11.

    Article  CAS  PubMed  Google Scholar 

  78. Psachoulias D, Vertzoni M, Butler J, Busby D, Symillides M, Dressman J, et al. An in vitro methodology for forecasting luminal concentrations and precipitation of highly permeable lipophilic weak bases in the fasted upper small intestine. Pharm Res. 2012;29(12):3486–98.

    Article  CAS  PubMed  Google Scholar 

  79. Larsen AT, Sassene P, Mullertz A. In vitro lipolysis models as a tool for the characterization of oral lipid and surfactant based drug delivery systems. Int J Pharm. 2011;417(1–2):245–55.

    Article  CAS  PubMed  Google Scholar 

  80. Thomas N, Holm R, Garmer M, Karlsson JJ, Mullertz A, Rades T. Supersaturated self-nanoemulsifying drug delivery systems (Super-SNEDDS) enhance the bioavailability of the poorly water-soluble drug simvastatin in dogs. AAPS J. 2013;15(1):219–27.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Boyd BJ, Khoo SM, Whittaker DV, Davey G, Porter CJ. A lipid-based liquid crystalline matrix that provides sustained release and enhanced oral bioavailability for a model poorly water soluble drug in rats. Int J Pharm. 2007;340(1–2):52–60.

    Article  CAS  PubMed  Google Scholar 

  82. Kaukonen AM, Boyd BJ, Porter CJ, Charman WN. Drug solubilization behavior during in vitro digestion of simple triglyceride lipid solution formulations. Pharm Res. 2004;21(2):245–53.

    Article  CAS  PubMed  Google Scholar 

  83. Kossena GA, Charman WN, Boyd BJ, Porter CJ. A novel cubic phase of medium chain lipid origin for the delivery of poorly water soluble drugs. J Control Release. 2004;99(2):217–29.

    Article  CAS  PubMed  Google Scholar 

  84. Larsen AT, Ohlsson AG, Polentarutti B, Barker RA, Phillips AR, Abu-Rmaileh R, et al. Oral bioavailability of cinnarizine in dogs: relation to SNEDDS droplet size, drug solubility and in vitro precipitation. Eur J Pharm Sci. 2013;48(1–2):339–50.

    Article  CAS  PubMed  Google Scholar 

  85. Hsieh YL, Ilevbare GA, Van Eerdenbrugh B, Box KJ, Sanchez-Felix MV, Taylor LS. pH-Induced precipitation behavior of weakly basic compounds: determination of extent and duration of supersaturation using potentiometric titration and correlation to solid state properties. Pharm Res. 2012;29(10):2738–53.

    Article  CAS  PubMed  Google Scholar 

  86. Hsieh YL, Box K, Taylor LS. Assessing the impact of polymers on the pH-induced precipitation behavior of poorly water soluble compounds using synchrotron wide angle x-ray scattering. J Pharm Sci. 2014;103(9):2724–35.

    Article  CAS  PubMed  Google Scholar 

  87. Lobmann K, Laitinen R, Grohganz H, Gordon KC, Strachan C, Rades T. Coamorphous drug systems: enhanced physical stability and dissolution rate of indomethacin and naproxen. Mol Pharm. 2011;8(5):1919–28.

    Article  CAS  PubMed  Google Scholar 

  88. Willart JF, Descamps M. Solid state amorphization of pharmaceuticals. Mol Pharm. 2008;5(6):905–20.

    Article  CAS  PubMed  Google Scholar 

  89. Miroshnyk I, Mirza S, Sandlert N. Pharmaceutical co-crystals-an opportunity for drug product enhancement. Expert Opin Drug Deliv. 2009;6(4):333–41.

    Article  CAS  PubMed  Google Scholar 

  90. Stillhart C, Imanidis G, Kuentz M. Insights into drug precipitation kinetics during in vitro digestion of a lipid-based drug delivery system using in-line raman spectroscopy and mathematical modeling. Pharm Res. 2013;30(12):3114–30.

    Article  CAS  PubMed  Google Scholar 

  91. Warren DB, Anby M, Hawley U, Boyd A, B. J. Real time evolution of liquid crystalline nanostructure during the digestion of formulation lipids using synchrotron small-angle X-ray scattering. Langmuir. 2011;27(15): 9528–34.

  92. Salentinig S, Phan S, Khan J, Hawley A, Boyd BJ. Formation of highly organized nanostructures during the digestion of milk. ACS Nano. 2013;7(12):10904–11.

    Article  CAS  PubMed  Google Scholar 

  93. Phan S, Salentinig S, Prestidge CA, Boyd BJ. Self-assembled structures formed during lipid digestion: characterization and implications for oral lipid-based drug delivery systems. Drug Deliv Transl Res. 2014;4(3):275–94.

    Article  CAS  PubMed  Google Scholar 

  94. Khan J, Hawley A. Rades T, Boyd BJ. In situ lipolysis and synchrotron small-angle x-ray scattering for the direct determination of the precipitation and solid-state form of a poorly water-soluble drug during digestion of a lipid-based formulation. J Pharm Sci. 2015.

  95. Ueda H, Ida Y, Kadota K, Tozuka Y. Raman mapping for kinetic analysis of crystallization of amorphous drug based on distributional images. Int J Pharm. 2014;462(1–2):115–22.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This manuscript was supported by the Australian Research Council through the Discovery Projects scheme (DP120104032). B.J.B. holds an ARC Future Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Boyd.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, J., Rades, T. & Boyd, B. The Precipitation Behavior of Poorly Water-Soluble Drugs with an Emphasis on the Digestion of Lipid Based Formulations. Pharm Res 33, 548–562 (2016). https://doi.org/10.1007/s11095-015-1829-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1829-5

KEY WORDS

Navigation