Skip to main content

Advertisement

Log in

Argonaute2 is a potential target for siRNA-based cancer therapy for HT1080 human fibrosarcoma

  • Research Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Small interfering RNAs (siRNAs) are small RNA molecules that have a potent, sequence-specific gene silencing effect and therefore show promise for therapeutic use as molecular-targeted drugs for the treatment of various genetic diseases, including cancer. The aim of the present study was to evaluate whether Argonaute2 (Ago2) is a therapeutically effective target for siRNA-based cancer therapy. Ago2 is the key protein in mammalian RNAi and is also known as the only member of the Ago family that mediates the microRNA (miRNA)-dependent cleavage of targeted mRNAs. It is assumed that these unique properties of the Ago2 protein can play a central role in the regulation of the miRNA pathway and subsequent translational inhibition of miRNA-targeted mRNAs, including cell survival and cancer progression. To assess its therapeutic effect, siRNA against Ago2 (Ago2-siRNA) was transfected into HT1080 human fibrosarcoma cells, which are malignant cancer cells. Ago2 gene silencing resulted in the inhibition of cell growth and the induction of apoptosis and G0/G1 arrest in the cell cycle. In addition, Ago2 knockdown induced morphological changes and actin stress fiber formation in the cells. The results of a microarray study showed that Ago2 suppression stimulated several crucial genes related to apoptosis, the cell cycle, immune response, cell adhesion, metabolism, etc. Repeated intratumoral injection of Ago2-siRNA/cationic liposome complex induced tumor growth suppression in an HT1080 xenograft model. These results suggest that the suppression of the Ago2 gene may be useful for the inhibition of cancer progression and that Ago2 may be a desirable target for siRNA-based cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Taconis WK, van Rijssel TG. Fibrosarcoma of long bones. A study of the significance of areas of malignant fibrous histiocytoma. J Bone Joint Surg Br. 1985;67(1):111–6.

    PubMed  CAS  Google Scholar 

  2. Mocellin S, Rossi CR, Brandes A, Nitti D. Adult soft tissue sarcomas: conventional therapies and molecularly targeted approaches. Cancer Treat Rev. 2006;32(1):9–27.

    Article  PubMed  CAS  Google Scholar 

  3. Meister G, Tuschl T. Mechanisms of gene silencing by double-stranded RNA. Nature. 2004;431(7006):343–9.

    Article  PubMed  CAS  Google Scholar 

  4. Akhtar S, Benter IF. Nonviral delivery of synthetic siRNAs in vivo. J Clin Invest. 2007;117(12):3623–32.

    Article  PubMed  CAS  Google Scholar 

  5. Huang C, Li M, Chen C, Yao Q. Small interfering RNA therapy in cancer: mechanism, potential targets, and clinical applications. Expert Opin Ther Targets. 2008;12(5):637–45.

    Article  PubMed  CAS  Google Scholar 

  6. Saxena N, Lahiri SS, Hambarde S, Tripathi RP. RAS: target for cancer therapy. Cancer Investig. 2008;26(9):948–55.

    Article  CAS  Google Scholar 

  7. Pelengaris S, Khan M. The c-MYC oncoprotein as a treatment target in cancer and other disorders of cell growth. Expert Opin Ther Targets. 2003;7(5):623–42.

    Article  PubMed  CAS  Google Scholar 

  8. Aigner A. Applications of RNA interference: current state and prospects for siRNA-based strategies in vivo. Appl Microbiol Biotechnol. 2007;76(1):9–21.

    Article  PubMed  CAS  Google Scholar 

  9. Takei Y, Kadomatsu K, Yuzawa Y, Matsuo S, Muramatsu T. A small interfering RNA targeting vascular endothelial growth factor as cancer therapeutics. Cancer Res. 2004;64(10):3365–70.

    Article  PubMed  CAS  Google Scholar 

  10. Mendelsohn J, Baselga J. Epidermal growth factor receptor targeting in cancer. Semin Oncol. 2006;33(4):369–85.

    Article  PubMed  CAS  Google Scholar 

  11. Kargiotis O, Chetty C, Gondi CS, Tsung AJ, Dinh DH, Gujrati M, et al. Adenovirus-mediated transfer of siRNA against MMP-2 mRNA results in impaired invasion and tumor-induced angiogenesis, induces apoptosis in vitro and inhibits tumor growth in vivo in glioblastoma. Oncogene. 2008;27(35):4830–40.

    Article  PubMed  CAS  Google Scholar 

  12. Ryan BM, O’Donovan N, Duffy MJ. Survivin: a new target for anti-cancer therapy. Cancer Treat Rev. 2009;35(7):553–62.

    Article  PubMed  CAS  Google Scholar 

  13. Sonoke S, Ueda T, Fujiwara K, Sato Y, Takagaki K, Hirabayashi K, et al. Tumor regression in mice by delivery of Bcl-2 small interfering RNA with pegylated cationic liposomes. Cancer Res. 2008;68(21):8843–51.

    Article  PubMed  CAS  Google Scholar 

  14. Zhang Y, Wang Y, Gao W, Zhang R, Han X, Jia M, et al. Transfer of siRNA against XIAP induces apoptosis and reduces tumor cells growth potential in human breast cancer in vitro and in vivo. Breast Cancer Res Treat. 2006;96(3):267–77.

    Article  PubMed  CAS  Google Scholar 

  15. Stege A, Priebsch A, Nieth C, Lage H. Stable and complete overcoming of MDR1/P-glycoprotein-mediated multidrug resistance in human gastric carcinoma cells by RNA interference. Cancer Gene Ther. 2004;11(11):699–706.

    Article  PubMed  CAS  Google Scholar 

  16. Degenhardt Y, Lampkin T. Targeting Polo-like kinase in cancer therapy. Clin Cancer Res. 2010;16(2):384–9.

    Article  PubMed  CAS  Google Scholar 

  17. Scholl C, Frohling S, Dunn IF, Schinzel AC, Barbie DA, Kim SY, et al. Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells. Cell. 2009;137(5):821–34.

    Article  PubMed  CAS  Google Scholar 

  18. Tokatlian T, Segura T. siRNA applications in nanomedicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010;2(3):305–15.

    Article  PubMed  CAS  Google Scholar 

  19. Sevignani C, Calin GA, Siracusa LD, Croce CM. Mammalian microRNAs: a small world for fine-tuning gene expression. Mamm Genome. 2006;17(3):189–202.

    Article  PubMed  CAS  Google Scholar 

  20. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    Article  PubMed  CAS  Google Scholar 

  21. Nilsen TW. Mechanisms of microRNA-mediated gene regulation in animal cells. Trends Genet. 2007;23(5):243–9.

    Article  PubMed  CAS  Google Scholar 

  22. Cho WC. OncomiRs: the discovery and progress of microRNAs in cancers. Mol Cancer. 2007;6:60.

    Article  PubMed  Google Scholar 

  23. Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ, et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science. 2004;305(5689):1437–41.

    Article  PubMed  CAS  Google Scholar 

  24. Sasaki T, Shiohama A, Minoshima S, Shimizu N. Identification of eight members of the Argonaute family in the human genome small star, filled. Genomics. 2003;82(3):323–30.

    Article  PubMed  CAS  Google Scholar 

  25. Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell. 2004;15(2):185–97.

    Article  PubMed  CAS  Google Scholar 

  26. O’Carroll D, Mecklenbrauker I, Das PP, Santana A, Koenig U, Enright AJ, et al. A Slicer-independent role for Argonaute 2 in hematopoiesis and the microRNA pathway. Genes Dev. 2007;21(16):1999–2004.

    Article  PubMed  Google Scholar 

  27. Tagami T, Barichello JM, Kikuchi H, Ishida T, Kiwada H. The gene-silencing effect of siRNA in cationic lipoplexes is enhanced by incorporating pDNA in the complex. Int J Pharm. 2007;333(1–2):62–9.

    Article  PubMed  CAS  Google Scholar 

  28. Barichello JM, Ishida T, Kiwada H. Complexation of siRNA and pDNA with cationic liposomes: the important aspects in lipoplex preparation. Meth Mol Biol. 2010;605:461–72.

    Article  CAS  Google Scholar 

  29. Sato Y, Murase K, Kato J, Kobune M, Sato T, Kawano Y, et al. Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen-specific chaperone. Nat Biotechnol. 2008;26(4):431–42.

    Article  PubMed  CAS  Google Scholar 

  30. Gonzalez R, Hutchins L, Nemunaitis J, Atkins M, Schwarzenberger PO. Phase 2 trial of Allovectin-7 in advanced metastatic melanoma. Melanoma Res. 2006;16(6):521–6.

    Article  PubMed  CAS  Google Scholar 

  31. Dow S, Elmslie R, Kurzman I, MacEwen G, Pericle F, Liggitt D. Phase I study of liposome–DNA complexes encoding the interleukin-2 gene in dogs with osteosarcoma lung metastases. Hum Gene Ther. 2005;16(8):937–46.

    Article  PubMed  CAS  Google Scholar 

  32. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001;411(6836):494–8.

    Article  PubMed  CAS  Google Scholar 

  33. Asai T, Suzuki Y, Matsushita S, Yonezawa S, Yokota J, Katanasaka Y, et al. Disappearance of the angiogenic potential of endothelial cells caused by Argonaute2 knockdown. Biochem Biophys Res Commun. 2008;368(2):243–8.

    Article  PubMed  CAS  Google Scholar 

  34. Kobayashi T, Ishida T, Okada Y, Ise S, Harashima H, Kiwada H. Effect of transferrin receptor-targeted liposomal doxorubicin in P-glycoprotein-mediated drug resistant tumor cells. Int J Pharm. 2007;329(1–2):94–102.

    Article  PubMed  CAS  Google Scholar 

  35. Plattner R, Gupta S, Khosravi-Far R, Sato KY, Perucho M, Der CJ, et al. Differential contribution of the ERK and JNK mitogen-activated protein kinase cascades to Ras transformation of HT1080 fibrosarcoma and DLD-1 colon carcinoma cells. Oncogene. 1999;18(10):1807–17.

    Article  PubMed  CAS  Google Scholar 

  36. Tagami T, Hirose K, Barichello JM, Ishida T, Kiwada H. Global gene expression profiling in cultured cells is strongly influenced by treatment with siRNA-cationic liposome complexes. Pharm Res. 2008;25(11):2497–504.

    Article  PubMed  CAS  Google Scholar 

  37. Abu Lila AS, Kizuki S, Doi Y, Suzuki T, Ishida T, Kiwada H. Oxaliplatin encapsulated in PEG-coated cationic liposomes induces significant tumor growth suppression via a dual-targeting approach in a murine solid tumor model. J Control Release. 2009;137(1):8–14.

    Article  PubMed  CAS  Google Scholar 

  38. Nguyen LT, Atobe K, Barichello JM, Ishida T, Kiwada H. Complex formation with plasmid DNA increases the cytotoxicity of cationic liposomes. Biol Pharm Bull. 2007;30(4):751–7.

    Article  PubMed  CAS  Google Scholar 

  39. Adams BD, Claffey KP, White BA. Argonaute-2 expression is regulated by epidermal growth factor receptor and mitogen-activated protein kinase signaling and correlates with a transformed phenotype in breast cancer cells. Endocrinology. 2009;150(1):14–23.

    Article  PubMed  CAS  Google Scholar 

  40. Fawcett J, Harris AL. Cell adhesion molecules and cancer. Curr Opin Oncol. 1992;4(1):142–8.

    Article  PubMed  CAS  Google Scholar 

  41. Puthalakath H, Villunger A, O’Reilly LA, Beaumont JG, Coultas L, Cheney RE, et al. Bmf: a proapoptotic BH3-only protein regulated by interaction with the myosin V actin motor complex, activated by anoikis. Science. 2001;293(5536):1829–32.

    Article  PubMed  CAS  Google Scholar 

  42. Jaattela M. Multiple cell death pathways as regulators of tumour initiation and progression. Oncogene. 2004;23(16):2746–56.

    Article  PubMed  Google Scholar 

  43. Gupta S. Molecular signaling in death receptor and mitochondrial pathways of apoptosis (review). Int J Oncol. 2003;22(1):15–20.

    PubMed  CAS  Google Scholar 

  44. Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R, Beach D. p21 is a universal inhibitor of cyclin kinases. Nature. 1993;366(6456):701–4.

    Article  PubMed  CAS  Google Scholar 

  45. Toyoshima H, Hunter T. p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell. 1994;78(1):67–74.

    Article  PubMed  CAS  Google Scholar 

  46. Dimova DK, Dyson NJ. The E2F transcriptional network: old acquaintances with new faces. Oncogene. 2005;24(17):2810–26.

    Article  PubMed  CAS  Google Scholar 

  47. Mack FA, Patel JH, Biju MP, Haase VH, Simon MC. Decreased growth of Vhl−/− fibrosarcomas is associated with elevated levels of cyclin kinase inhibitors p21 and p27. Mol Cell Biol. 2005;25(11):4565–78.

    Article  PubMed  CAS  Google Scholar 

  48. Abukhdeir AM, Park BH. P21 and p27: roles in carcinogenesis and drug resistance. Expert Rev Mol Med. 2008;10:e19.

    Article  PubMed  Google Scholar 

  49. Antonacopoulou AG, Palli M, Marousi S, Dimitrakopoulos FI, Kyriakopoulou U, Tsamandas AC, et al. Prion protein expression and the M129V polymorphism of the PRNP gene in patients with colorectal cancer. Mol Carcinog. 2010;49(7):693–9.

    PubMed  CAS  Google Scholar 

  50. Liang J, Pan Y, Zhang D, Guo C, Shi Y, Wang J, et al. Cellular prion protein promotes proliferation and G1/S transition of human gastric cancer cells SGC7901 and AGS. FASEB J. 2007;21(9):2247–56.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. James L. McDonald for his helpful advice in improving the manuscript. This research was supported by Research on Advanced Medical Technology in Health and Labor Science Research Grants, Ministry of Health, Labor and Welfare, Japan.

Conflict of interest

Authors declare no conflict.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuhiro Ishida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tagami, T., Suzuki, T., Hirose, K. et al. Argonaute2 is a potential target for siRNA-based cancer therapy for HT1080 human fibrosarcoma. Drug Deliv. and Transl. Res. 1, 277–288 (2011). https://doi.org/10.1007/s13346-011-0025-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-011-0025-3

Keywords

Navigation