Skip to main content
Log in

Targeting Axonal Protein Synthesis in Neuroregeneration and Degeneration

  • Review
  • Published:
Neurotherapeutics

Abstract

Localized protein synthesis is a mechanism by which morphologically polarized cells react in a spatially confined and temporally acute manner to changes in their environment. During the development of the nervous system intra-axonal protein synthesis is crucial for the establishment of neuronal connections. In contrast, mature axons have long been considered as translationally inactive but upon nerve injury or under neurodegenerative conditions specific subsets of mRNAs are recruited into axons and locally translated. Intra-axonally synthesized proteins can have pathogenic or restorative and regenerative functions, and thus targeting the axonal translatome might have therapeutic value, for example in the treatment of spinal cord injury or Alzheimer’s disease. In the case of Alzheimer’s disease the local synthesis of the stress response transcription factor activating transcription factor 4 mediates the long-range retrograde spread of pathology across the brain, and inhibition of local Atf4 translation downstream of the integrated stress response might interfere with this spread. Several molecular tools and approaches have been developed to target specifically the axonal translatome by either overexposing proteins locally in axons or, conversely, knocking down selectively axonally localized mRNAs. Many questions about axonal translation remain to be answered, especially with regard to the mechanisms establishing specificity but, nevertheless, targeting the axonal translatome is a promising novel avenue to pursue in the development for future therapies for various neurological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jung H, Gkogkas CG, Sonenberg N, Holt CE. Remote control of gene function by local translation. Cell 2014;157:26-40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Raper J, Mason C. Cellular strategies of axonal pathfinding. Cold Spring Harb Perspect Biol 2010;2:a001933.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Kolodkin AL, Tessier-Lavigne M. Mechanisms and molecules of neuronal wiring: a primer. Cold Spring Harb Perspect Biol 2011;3:pii:a001727.

  4. Dontchev VD, Letourneau PC. Growth cones integrate signaling from multiple guidance cues. J Histochem Cytochem 2003;51:435-444.

    Article  CAS  PubMed  Google Scholar 

  5. Barker LF. The nervous system and its constituent neurones—designed for the use of practitioners of medicine and of students of medicine and psychology. D. Appleton and Company, New York, 1899.

    Google Scholar 

  6. Alvarez J, Giuditta A, Koenig E. Protein synthesis in axons and terminals: significance for maintenance, plasticity and regulation of phenotype. With a critique of slow transport theory. Prog Neurobiol 2000;62:1-62.

    Article  CAS  PubMed  Google Scholar 

  7. Campbell DS, Holt CE. Chemotropic responses of retinal growth cones mediated by rapid local protein synthesis and degradation. Neuron 2001;32:1013-1026.

    Article  CAS  PubMed  Google Scholar 

  8. Wu KY, Hengst U, Cox LJ, et al. Local translation of RhoA regulates growth cone collapse. Nature 2005;436:1020-1024.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Leung KM, van Horck FP, Lin AC, Allison R, Standart N, Holt CE. Asymmetrical β-actin mRNA translation in growth cones mediates attractive turning to netrin-1. Nat Neurosci 2006;9:1247-1256.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Piper M, Anderson R, Dwivedy A, et al. Signaling mechanisms underlying Slit2-induced collapse of Xenopus retinal growth cones. Neuron 2006;49:215-228.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Yao J, Sasaki Y, Wen Z, Bassell GJ, Zheng JQ. An essential role for β-actin mRNA localization and translation in Ca2+-dependent growth cone guidance. Nat Neurosci 2006;9:1265-1273.

    Article  CAS  PubMed  Google Scholar 

  12. Hengst U, Deglincerti A, Kim HJ, Jeon NL, Jaffrey SR. Axonal elongation triggered by stimulus-induced local translation of a polarity complex protein. Nat Cell Biol 2009;11:1024-1030.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Gracias NG, Shirkey-Son NJ, Hengst U. Local translation of TC10 is required for membrane expansion during axon outgrowth. Nat Commun 2014;5:3506.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Preitner N, Quan J, Nowakowski Dan W, et al. APC Is an RNA-binding protein, and its interactome provides a link to neural development and microtubule assembly. Cell 2014;158:368-382.

    Article  CAS  PubMed  Google Scholar 

  15. Brittis PA, Lu Q, Flanagan JG. Axonal protein synthesis provides a mechanism for localized regulation at an intermediate target. Cell 2002;110:223-235.

    Article  CAS  PubMed  Google Scholar 

  16. Tcherkezian J, Brittis PA, Thomas F, Roux PP, Flanagan JG. Transmembrane receptor DCC associates with protein synthesis machinery and regulates translation. Cell 2010;141:632-644.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Colak D, Ji SJ, Porse BT, Jaffrey SR. Regulation of axon guidance by compartmentalized nonsense-mediated mRNA decay. Cell 2013;153:1252-1265.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Yoon BC, Jung H, Dwivedy A, O'Hare CM, Zivraj KH, Holt CE. Local translation of extranuclear lamin B promotes axon maintenance. Cell 2012;148:752-764.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Cox LJ, Hengst U, Gurskaya NG, Lukyanov KA, Jaffrey SR. Intra-axonal translation and retrograde trafficking of CREB promotes neuronal survival. Nat Cell Biol 2008;10:149-159.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Ji SJ, Jaffrey SR. Intra-axonal translation of SMAD1/5/8 mediates retrograde regulation of trigeminal ganglia subtype specification. Neuron 2012;74:95-107.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Bassell GJ, Singer RH, Kosik KS. Association of poly(A) mRNA with microtubules in cultured neurons. Neuron 1994;12:571-582.

    Article  CAS  PubMed  Google Scholar 

  22. Kleiman R, Banker G, Steward O. Development of subcellular mRNA compartmentation in hippocampal neurons in culture. J Neurosci 1994;14:1130-1140.

    CAS  PubMed  Google Scholar 

  23. Hengst U, Jaffrey SR. Function and translational regulation of mRNA in developing axons. Semin Cell Dev Biol 2007;18:209-215.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Taylor AM, Wu J, Tai HC, Schuman EM. Axonal translation of beta-catenin regulates synaptic vesicle dynamics. J Neurosci 2013;33:5584-5589.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Dubacq C, Jamet S, Trembleau A. Evidence for developmentally regulated local translation of odorant receptor mRNAs in the axons of olfactory sensory neurons. J Neurosci 2009;29:10184-10190.

    Article  CAS  PubMed  Google Scholar 

  26. Willis DE, Xu M, Donnelly CJ, et al. Axonal Localization of transgene mRNA in mature PNS and CNS neurons. J Neurosci 2011;31:14481-14487.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Kar AN, Sun CY, Reichard K, et al. Dysregulation of the axonal trafficking of nuclear-encoded mitochondrial mRNA alters neuronal mitochondrial activity and mouse behavior. Dev Neurobiol 2014;74:333-350.

    Article  CAS  PubMed  Google Scholar 

  28. Gumy LF, Yeo GS, Tung YC, et al. Transcriptome analysis of embryonic and adult sensory axons reveals changes in mRNA repertoire localization. RNA 2011;17:85-98.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Harel NY, Strittmatter SM. Can regenerating axons recapitulate developmental guidance during recovery from spinal cord injury? Nat Rev Neurosci 2006;7:603-616.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Verma P, Chierzi S, Codd AM, et al. Axonal protein synthesis and degradation are necessary for efficient growth cone regeneration. J Neurosci 2005;25:331-342.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Zheng JQ, Kelly TK, Chang B, et al. A functional role for intra-axonal protein synthesis during axonal regeneration from adult sensory neurons. J Neurosci 2001;21:9291-9303.

    CAS  PubMed  Google Scholar 

  32. Hanz S, Perlson E, Willis D, et al. Axoplasmic importins enable retrograde injury signaling in lesioned nerve. Neuron 2003;40:1095-1104.

    Article  CAS  PubMed  Google Scholar 

  33. Willis D, Li KW, Zheng JQ, et al. Differential transport and local translation of cytoskeletal, injury-response, and neurodegeneration protein mRNAs in axons. J Neurosci 2005;25:778-791.

    Article  CAS  PubMed  Google Scholar 

  34. Ben-Yaakov K, Dagan SY, Segal-Ruder Y, et al. Axonal transcription factors signal retrogradely in lesioned peripheral nerve. EMBO J 2012;31:1350-1363.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Perry RB, Doron-Mandel E, Iavnilovitch E, et al. Subcellular knockout of importin beta1 perturbs axonal retrograde signaling. Neuron 2012;75:294-305.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Yoo S, van Niekerk EA, Merianda TT, Twiss JL. Dynamics of axonal mRNA transport and implications for peripheral nerve regeneration. Exp Neurol 2010;223:19-27.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Gumy LF, Tan CL, Fawcett JW. The role of local protein synthesis and degradation in axon regeneration. Exp Neurol 2010;223:28-37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Bradke F, Fawcett JW, Spira ME. Assembly of a new growth cone after axotomy: the precursor to axon regeneration. Nat Rev Neurosci 2012;13:183-193.

    CAS  PubMed  Google Scholar 

  39. Rishal I, Fainzilber M. Axon-soma communication in neuronal injury. Nat Rev Neurosci 2014;15:32-42.

    Article  CAS  PubMed  Google Scholar 

  40. Taylor AM, Berchtold NC, Perreau VM, Tu CH, Li Jeon N, Cotman CW. Axonal mRNA in uninjured and regenerating cortical mammalian axons. J Neurosci 2009;29:4697-4707.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Alami NH, Smith RB, Carrasco MA, et al. Axonal transport of TDP-43 mRNA granules is impaired by ALS-causing mutations. Neuron 2014;81:536-543.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Rage F, Boulisfane N, Rihan K, et al. Genome-wide identification of mRNAs associated with the protein SMN whose depletion decreases their axonal localization. RNA 2013;19:1755-1766.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Kye MJ, Niederst ED, Wertz MH, et al. SMN regulates axonal local translation via miR-183/mTOR pathway. Hum Mol Genet 2014 Jul 4 [Epub ahead of print].

  44. Liu-Yesucevitz L, Bassell GJ, Gitler AD, et al. Local RNA translation at the synapse and in disease. J Neurosci 2011;31:16086-16093.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Baleriola J, Walker CA, Jean YY, et al. Axonally synthesized ATF4 transmits a neurodegenerative signal across brain regions. Cell 2014;158:1159-1172.

    Article  CAS  PubMed  Google Scholar 

  46. Sisodia SS, St George-Hyslop PH. gamma-Secretase, Notch, Abeta and Alzheimer’s disease: where do the presenilins fit in? Nat Rev Neurosci 2002;3:281-290.

    Article  CAS  PubMed  Google Scholar 

  47. Iqbal K, Liu F, Gong CX, Alonso Adel C, Grundke-Iqbal I. Mechanisms of tau-induced neurodegeneration. Acta Neuropathol 2009;118:53-69.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Perlson E, Maday S, Fu MM, Moughamian AJ, Holzbaur EL. Retrograde axonal transport: pathways to cell death? Trends Neurosci 2010;33:335-344.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Liu Y, Yoo MJ, Savonenko A, et al. Amyloid pathology is associated with progressive monoaminergic neurodegeneration in a transgenic mouse model of Alzheimer’s disease. J Neurosci 2008;28:13805-13814.

    Article  CAS  PubMed  Google Scholar 

  50. Marcyniuk B, Mann DM, Yates PO. The topography of cell loss from locus caeruleus in Alzheimer’s disease. J Neurol Sci 1986;76:335-345.

    Article  CAS  PubMed  Google Scholar 

  51. German DC, Manaye KF, White CL, 3rd, et al. Disease-specific patterns of locus coeruleus cell loss. Ann Neurol 1992;32:667-676.

    Article  CAS  PubMed  Google Scholar 

  52. Parvizi J, Van Hoesen GW, Damasio A. The selective vulnerability of brainstem nuclei to Alzheimer’s disease. Ann Neurol 2001;49:53-66.

    Article  CAS  PubMed  Google Scholar 

  53. Higuchi M, Lee VM, Trojanowski JQ. Tau and axonopathy in neurodegenerative disorders. Neuromolecular Med 2002;2:131-150.

    Article  CAS  PubMed  Google Scholar 

  54. Götz J, Ittner LM, Kins S. Do axonal defects in tau and amyloid precursor protein transgenic animals model axonopathy in Alzheimer’s disease? J Neurochem 2006;98:993-1006.

    Article  PubMed  Google Scholar 

  55. Krstic D, Knuesel I. Deciphering the mechanism underlying late-onset Alzheimer disease. Nat Rev Neurol 2013;9:25-34.

    Article  CAS  PubMed  Google Scholar 

  56. Zhu X, Casadesus G, Webber KM, et al. Parallels between neurodevelopment and neurodegeneration: A case study of Alzheimer’s disease. In: Lajtha A, Perez-Polo JR, Rossner S (eds) Handbook of neurochemistry and molecular neurobiology. Springer, New York, 2008, pp. 147-155.

    Chapter  Google Scholar 

  57. Pearson RC, Esiri MM, Hiorns RW, Wilcock GK, Powell TP. Anatomical correlates of the distribution of the pathological changes in the neocortex in Alzheimer disease. Proc Natl Acad Sci U S A 1985;82:4531-4534.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Liu L, Drouet V, Wu JW, et al. Trans-synaptic spread of tau pathology in vivo. PLoS One 2012;7:e31302.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. de Calignon A, Polydoro M, Suárez-Calvet M, et al. Propagation of tau pathology in a model of early Alzheimer’s disease. Neuron 2012;73:685-697.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Lambert JC, Ibrahim-Verbaas CA, Harold D, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet 2013;45:1452-1458.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Goate A, Chartier-Harlin MC, Mullan M, et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 1991;349:704-706.

    Article  CAS  PubMed  Google Scholar 

  62. Farrer LA, Cupples LA, Haines JL, et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA 1997;278:1349-1356.

    CAS  Google Scholar 

  63. Harold D, Abraham R, Hollingworth P, et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 2009;41:1088-1093.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Lambert JC, Heath S, Even G, et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet 2009;41:1094-1099.

    Article  CAS  PubMed  Google Scholar 

  65. DeMattos RB, Cirrito JR, Parsadanian M, et al. ApoE and clusterin cooperatively suppress Aβ levels and deposition: evidence that ApoE regulates extracellular Aβ metabolism in vivo. Neuron 2004;41:193-202.

    Article  CAS  PubMed  Google Scholar 

  66. Shulman JM, Imboywa S, Giagtzoglou N, et al. Functional screening in Drosophila identifies Alzheimer’s disease susceptibility genes and implicates Tau-mediated mechanisms. Hum Mol Genet 2014;23:870-877.

    Article  CAS  PubMed  Google Scholar 

  67. Harding HP, Zhang Y, Zeng H, et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 2003;11:619-633.

    Article  CAS  PubMed  Google Scholar 

  68. Donnelly N, Gorman AM, Gupta S, Samali A. The eIF2α kinases: their structures and functions. Cell Mol Life Sci 2013;70:3493-3511.

    Article  CAS  PubMed  Google Scholar 

  69. Baird TD, Wek RC. Eukaryotic initiation factor 2 phosphorylation and translational control in metabolism. Adv Nutr 2012;3:307-321.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Ohno M. Roles of eIF2alpha kinases in the pathogenesis of Alzheimer’s disease. Front Mol Neurosci 2014;7:22.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Tsukita S, Ishikawa H. Three-dimensional distribution of smooth endoplasmic reticulum in myelinated axons. J Electron Microsc (Tokyo) 1976;25:141-149.

    CAS  Google Scholar 

  72. Broadwell RD, Cataldo AM. The neuronal endoplasmic reticulum: its cytochemistry and contribution to the endomembrane system. II. Axons and terminals. J Comp Neurol 1984;230:231-248.

    Article  CAS  PubMed  Google Scholar 

  73. Terasaki M, Slater NT, Fein A, Schmidek A, Reese TS. Continuous network of endoplasmic reticulum in cerebellar Purkinje neurons. Proc Natl Acad Sci U S A 1994;91:7510-7514.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science 2011;334:1081-1086.

    Article  CAS  PubMed  Google Scholar 

  75. Tabas I, Ron D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol 2011;13:184-190.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Kimata Y, Kohno K. Endoplasmic reticulum stress-sensing mechanisms in yeast and mammalian cells. Curr Opin Cell Biol 2011;23:135-142.

    Article  CAS  PubMed  Google Scholar 

  77. Matus S, Glimcher LH, Hetz C. Protein folding stress in neurodegenerative diseases: a glimpse into the ER. Curr Opin Cell Biol 2011;23:239-252.

    Article  CAS  PubMed  Google Scholar 

  78. Hoozemans JJ, van Haastert ES, Eikelenboom P, de Vos RA, Rozemuller JM, Scheper W. Activation of the unfolded protein response in Parkinson's disease. Biochem Biophys Res Commun 2007;354:707-711.

    Article  CAS  PubMed  Google Scholar 

  79. Duennwald ML, Lindquist S. Impaired ERAD and ER stress are early and specific events in polyglutamine toxicity. Genes Dev 2008;22:3308-3319.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Cornejo VH, Hetz C. The unfolded protein response in Alzheimer’s disease. Semin Immunopathol 2013;35:277-292.

    Article  CAS  PubMed  Google Scholar 

  81. Saxena S, Cabuy E, Caroni P. A role for motoneuron subtype-selective ER stress in disease manifestations of FALS mice. Nat Neurosci 2009;12:627-636.

    Article  CAS  PubMed  Google Scholar 

  82. Penas C, Guzman MS, Verdu E, Fores J, Navarro X, Casas C. Spinal cord injury induces endoplasmic reticulum stress with different cell-type dependent response. J Neurochem 2007;102:1242-1255.

    Article  CAS  PubMed  Google Scholar 

  83. Yamauchi T, Sakurai M, Abe K, Matsumiya G, Sawa Y. Impact of the endoplasmic reticulum stress response in spinal cord after transient ischemia. Brain Res 2007;1169:24-33.

    Article  CAS  PubMed  Google Scholar 

  84. Moreno JA, Halliday M, Molloy C, et al. Oral treatment targeting the unfolded protein response prevents neurodegeneration and clinical disease in prion-infected mice. Sci Transl Med 2013;5:206ra138.

  85. Sidrauski C, Acosta-Alvear D, Khoutorsky A, et al. Pharmacological brake-release of mRNA translation enhances cognitive memory. eLife 2013;2:e00498.

    Article  PubMed Central  PubMed  Google Scholar 

  86. Ehrengruber MU. Alphaviral vectors for gene transfer into neurons. Mol Neurobiol 2002;26:183-201.

    Article  CAS  PubMed  Google Scholar 

  87. Jeromin A, Yuan LL, Frick A, Pfaffinger P, Johnston D. A modified Sindbis vector for prolonged gene expression in neurons. J Neurophysiol 2003;90:2741-2745.

    Article  PubMed  Google Scholar 

  88. Kim J, Dittgen T, Nimmerjahn A et al. Sindbis vector SINrep(nsP2S726): a tool for rapid heterologous expression with attenuated cytotoxicity in neurons. J Neurosci Methods 2004;133:81-90.

    Article  CAS  PubMed  Google Scholar 

  89. Dryga SA, Dryga OA, Schlesinger S. Identification of mutations in a Sindbis virus variant able to establish persistent infection in BHK cells: the importance of a mutation in the nsP2 gene. Virology 1997;228:74-83.

    Article  CAS  PubMed  Google Scholar 

  90. Walker BA, Hengst U, Kim HJ, et al. Reprogramming axonal behavior by axon-specific viral transduction. Gene Ther 2012;19:947-955.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Hengst U, Cox LJ, Macosko EZ, Jaffrey SR. Functional and selective RNA interference in developing axons and growth cones. J Neurosci 2006;26:5727-5732.

    Article  CAS  PubMed  Google Scholar 

  92. Aschrafi A, Schwechter AD, Mameza MG, Natera-Naranjo O, Gioio AE, Kaplan BB. MicroRNA-338 regulates local cytochrome c oxidase IV mRNA levels and oxidative phosphorylation in the axons of sympathetic neurons. J Neurosci 2008;28:12581-12590.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Murashov AK, Chintalgattu V, Islamov RR, et al. RNAi pathway is functional in peripheral nerve axons. FASEB J 2007;21:656-670.

    Article  CAS  PubMed  Google Scholar 

  94. Gerber AP, Herschlag D, Brown PO. Extensive association of functionally and cytotopically related mRNAs with Puf family RNA-binding proteins in yeast. PLoS Biol 2004;2:E79.

    Article  PubMed Central  PubMed  Google Scholar 

  95. Slobodin B, Gerst JE. A novel mRNA affinity purification technique for the identification of interacting proteins and transcripts in ribonucleoprotein complexes. RNA 2010;16:2277-2290.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Keene JD, Tenenbaum SA. Eukaryotic mRNPs may represent posttranscriptional operons. Mol Cell 2002;9:1161-1167.

    Article  CAS  PubMed  Google Scholar 

  97. Keene JD. RNA regulons: coordination of post-transcriptional events. Nat Rev Genet 2007;8:533-543.

    Article  CAS  PubMed  Google Scholar 

  98. Mansfield KD, Keene JD. The ribonome: a dominant force in co-ordinating gene expression. Biol Cell 2009;101:169-181.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Research reported in this publication was supported by the National Institute of Mental Health of the NIH under award number R01MH096702 (U.H.).

Required Author Forms

Disclosure forms provided by the authors are available with online version of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Hengst.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 499 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baleriola, J., Hengst, U. Targeting Axonal Protein Synthesis in Neuroregeneration and Degeneration. Neurotherapeutics 12, 57–65 (2015). https://doi.org/10.1007/s13311-014-0308-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13311-014-0308-8

Key Words

Navigation