Skip to main content
Log in

Inhibition of Protein Misfolding/Aggregation Using Polyglutamine Binding Peptide QBP1 as a Therapy for the Polyglutamine Diseases

  • Published:
Neurotherapeutics

Abstract

Protein misfolding and aggregation in the brain have been recognized to be crucial in the pathogenesis of various neurodegenerative diseases, including Alzheimer’s, Parkinson’s, and the polyglutamine (polyQ) diseases, which are collectively called the “protein misfolding diseases”. In the polyQ diseases, an abnormally expanded polyQ stretch in the responsible proteins causes the proteins to misfold and aggregate, eventually resulting in neurodegeneration. Hypothesizing that polyQ protein misfolding and aggregation could be inhibited by molecules specifically binding to the expanded polyQ stretch, we identified polyQ binding peptide 1 (QBP1). We show that QBP1 does, indeed, inhibit misfolding and aggregation of the expanded polyQ protein in vitro. Furthermore overexpression of QBP1 by the crossing of transgenic animals inhibits neurodegeneration in Drosophila models of the polyQ diseases. We also introduce our attempts to deliver QBP1 into the brain by administration using viral vectors and protein transduction domains. Interestingly, recent data suggest that QBP1 can also inhibit the misfolding/aggregation of proteins responsible for other protein misfolding diseases, highlighting the potential of QBP1 as a general therapeutic molecule for a wide range of neurodegenerative diseases. We hope that in the near future, aggregation inhibitor-based drugs will be developed and bring relief to patients suffering from these currently intractable protein misfolding diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Glenner GG, Wong CW. Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 1984;120:885-890.

    Article  PubMed  CAS  Google Scholar 

  2. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. α-synuclein in Lewy bodies. Nature 1997;388:839-840.

    Article  PubMed  CAS  Google Scholar 

  3. Ross CA, Poirier MA. Opinion: What is the role of protein aggregation in neurodegeneration? Nat Rev Mol Cell Biol 2005;6:891-898.

    Article  PubMed  CAS  Google Scholar 

  4. Soto C. Unfolding the role of protein misfolding in neurodegenerative diseases. Nat Rev Neurosci 2003;4:49-60.

    Article  PubMed  CAS  Google Scholar 

  5. Taylor JP, Hardy J, Fischbeck KH. Toxic proteins in neurodegenerative disease. Science 2002;296:1991-1995.

    Article  PubMed  CAS  Google Scholar 

  6. Gusella JF, MacDonald ME. Molecular genetics: unmasking polyglutamine triggers in neurodegenerative disease. Nat Rev Neurosci 2000;1:109-115.

    Article  PubMed  CAS  Google Scholar 

  7. Orr HT, Zoghbi HY. Trinucleotide repeat disorders. Annu Rev Neurosci 2007;30:575-621.

    Article  PubMed  CAS  Google Scholar 

  8. Faber PW, Alter JR, MacDonald ME, Hart AC. Polyglutamine-mediated dysfunction and apoptotic death of a Caenorhabditis elegans sensory neuron. Proc Natl Acad Sci U S A 1999;96:179-184.

    Article  PubMed  CAS  Google Scholar 

  9. Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, et al. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 1996;87:493-506.

    Article  PubMed  CAS  Google Scholar 

  10. Ordway JM, Tallaksen-Greene S, Gutekunst CA, Bernstein EM, Cearley JA, Wiener HW, et al. Ectopically expressed CAG repeats cause intranuclear inclusions and a progressive late onset neurological phenotype in the mouse. Cell 1997;91:753-763.

    Article  PubMed  CAS  Google Scholar 

  11. Warrick JM, Paulson HL, Gray-Board GL, Bui QT, Fischbeck KH, Pittman RN, et al. Expanded polyglutamine protein forms nuclear inclusions and causes neural degeneration in Drosophila. Cell 1998;93:939-949.

    Article  PubMed  CAS  Google Scholar 

  12. Nagai Y, Inui T, Popiel HA, Fujikake N, Hasegawa K, Urade Y, et al. A toxic monomeric conformer of the polyglutamine protein. Nat Struct Mol Biol 2007;14:332-340.

    Article  PubMed  CAS  Google Scholar 

  13. Bauer PO, Nukina N. The pathogenic mechanisms of polyglutamine diseases and current therapeutic strategies. J Neurochem 2009;110:1737-1765.

    Article  PubMed  CAS  Google Scholar 

  14. Michalik A, Van Broeckhoven C. Pathogenesis of polyglutamine disorders: aggregation revisited. Hum Mol Genet 2003;12 Spec No 2:R173-186.

    Google Scholar 

  15. Nagai Y, Popiel HA. Conformational changes and aggregation of expanded polyglutamine proteins as therapeutic targets of the polyglutamine diseases: exposed β-sheet hypothesis. Curr Pharm Des 2008;14:3267-3279.

    Article  PubMed  CAS  Google Scholar 

  16. Shao J, Diamond MI. Polyglutamine diseases: emerging concepts in pathogenesis and therapy. Hum Mol Genet 2007;16 Spec No. 2:R115-123.

    Google Scholar 

  17. Williams AJ, Paulson HL. Polyglutamine neurodegeneration: protein misfolding revisited. Trends Neurosci 2008;31:521-528.

    Article  PubMed  CAS  Google Scholar 

  18. Di Prospero NA, Fischbeck KH. Therapeutics development for triplet repeat expansion diseases. Nat Rev Genet 2005;6:756-765.

    Article  PubMed  Google Scholar 

  19. Steffan JS, Bodai L, Pallos J, Poelman M, McCampbell A, Apostol BL, et al. Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 2001;413:739-743.

    Article  PubMed  CAS  Google Scholar 

  20. Bates G. Huntingtin aggregation and toxicity in Huntington's disease. Lancet 2003;361:1642-1644.

    Article  PubMed  CAS  Google Scholar 

  21. Frost B, Diamond MI. Prion-like mechanisms in neurodegenerative diseases. Nat Rev Neurosci 2010;11:155-159.

    PubMed  CAS  Google Scholar 

  22. Herbst M, Wanker EE. Therapeutic approaches to polyglutamine diseases: combating protein misfolding and aggregation. Curr Pharm Des 2006;12:2543-2555.

    Article  PubMed  CAS  Google Scholar 

  23. Soto C, Kindy MS, Baumann M, Frangione B. Inhibition of Alzheimer's amyloidosis by peptides that prevent β-sheet conformation. Biochem Biophys Res Commun 1996;226:672-680.

    Article  PubMed  CAS  Google Scholar 

  24. Trottier Y, Lutz Y, Stevanin G, Imbert G, Devys D, Cancel G, et al. Polyglutamine expansion as a pathological epitope in Huntington's disease and four dominant cerebellar ataxias. Nature 1995;378:403-406.

    Article  PubMed  CAS  Google Scholar 

  25. Nagai Y, Tucker T, Ren H, Kenan DJ, Henderson BS, Keene JD, et al. Inhibition of polyglutamine protein aggregation and cell death by novel peptides identified by phage display screening. J Biol Chem 2000;275:10437-10442.

    Article  PubMed  CAS  Google Scholar 

  26. Okamoto Y, Nagai Y, Fujikake N, Popiel HA, Yoshioka T, Toda T, et al. Surface plasmon resonance characterization of specific binding of polyglutamine aggregation inhibitors to the expanded polyglutamine stretch. Biochem Biophys Res Commun 2009;378:634-639.

    Article  PubMed  CAS  Google Scholar 

  27. Hervas R, Oroz J, Galera-Prat A, Goni O, Valbuena A, Vera AM, et al. Common features at the start of the neurodegeneration cascade. PLoS Biol 2012;10:e1001335.

    Article  PubMed  CAS  Google Scholar 

  28. Ren H, Nagai Y, Tucker T, Strittmatter WJ, Burke JR. Amino acid sequence requirements of peptides that inhibit polyglutamine-protein aggregation and cell death. Biochem Biophys Res Commun 2001;288:703-710.

    Article  PubMed  CAS  Google Scholar 

  29. Takahashi T, Kikuchi S, Katada S, Nagai Y, Nishizawa M, Onodera O. Soluble polyglutamine oligomers formed prior to inclusion body formation are cytotoxic. Hum Mol Genet 2008;17:345-356.

    Article  PubMed  CAS  Google Scholar 

  30. Takahashi Y, Okamoto Y, Popiel HA, Fujikake N, Toda T, Kinjo M, et al. Detection of polyglutamine protein oligomers in cells by fluorescence correlation spectroscopy. J Biol Chem 2007;282:24039-24048.

    Article  PubMed  CAS  Google Scholar 

  31. Bilen J, Bonini NM. Drosophila as a model for human neurodegenerative disease. Ann Rev Genet 2005;39:153-171.

    Article  PubMed  CAS  Google Scholar 

  32. Nagai Y, Fujikake N, Ohno K, Higashiyama H, Popiel HA, Rahadian J, et al. Prevention of polyglutamine oligomerization and neurodegeneration by the peptide inhibitor QBP1 in Drosophila. Hum Mol Genet 2003;12:1253-1259.

    Article  PubMed  CAS  Google Scholar 

  33. Okada T, Nomoto T, Shimazaki K, Lijun W, Lu Y, Matsushita T, et al. Adeno-associated virus vectors for gene transfer to the brain. Methods 2002;28:237-247.

    Article  PubMed  CAS  Google Scholar 

  34. Popiel HA, Takeuchi T, Fujita H, Yamamoto K, Ito C, Yamane H, et al. Hsp40 gene therapy exerts therapeutic effects on polyglutamine disease mice via a non-cell autonomous mechanism. PLoS ONE 2012;7:e51069.

    Article  PubMed  CAS  Google Scholar 

  35. Bauer PO, Goswami A, Wong HK, Okuno M, Kurosawa M, Yamada M, et al. Harnessing chaperone-mediated autophagy for the selective degradation of mutant huntingtin protein. Nat Biotech 2010;28:256-263.

    Article  CAS  Google Scholar 

  36. Duque S, Joussemet B, Riviere C, Marais T, Dubreil L, Douar AM, et al. Intravenous administration of self-complementary AAV9 enables transgene delivery to adult motor neurons. Mol Ther 2009;17:1187-1196.

    Article  PubMed  CAS  Google Scholar 

  37. Joliot A, Prochiantz A. Transduction peptides: from technology to physiology. Nat Cell Biol 2004;6:189-196.

    Article  PubMed  CAS  Google Scholar 

  38. Wadia JS, Dowdy SF. Protein transduction technology. Curr Opin Biotech 2002;13:52-56.

    Article  PubMed  CAS  Google Scholar 

  39. Popiel HA, Nagai Y, Fujikake N, Toda T. Protein transduction domain-mediated delivery of QBP1 suppresses polyglutamine-induced neurodegeneration in vivo. Mol Ther 2007;15:303-309.

    Article  PubMed  CAS  Google Scholar 

  40. Popiel HA, Nagai Y, Fujikake N, Toda T. Delivery of the aggregate inhibitor peptide QBP1 into the mouse brain using PTDs and its therapeutic effect on polyglutamine disease mice. Neurosci Lett 2009;449:87-92.

    Article  PubMed  CAS  Google Scholar 

  41. Hamuro L, Zhang G, Tucker TJ, Self C, Strittmatter WJ, Burke JR. Optimization of a polyglutamine aggregation inhibitor peptide (QBP1) using a thioflavin T fluorescence assay. Assay Drug Dev Tech 2007;5:629-636.

    Article  CAS  Google Scholar 

  42. Tomita K, Popiel HA, Nagai Y, Toda T, Yoshimitsu Y, Ohno H, et al. Structure-activity relationship study on polyglutamine binding peptide QBP1. Bioorg Med Chem 2009;17:1259-1263.

    Article  PubMed  CAS  Google Scholar 

  43. Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 2003;300:486-489.

    Article  PubMed  CAS  Google Scholar 

  44. Ehrnhoefer DE, Bieschke J, Boeddrich A, Herbst M, Masino L, Lurz R, et al. EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nat Struct Mol Biol 2008;15:558-566.

    Article  PubMed  CAS  Google Scholar 

  45. Ehrnhoefer DE, Duennwald M, Markovic P, Wacker JL, Engemann S, Roark M, et al. Green tea (-)-epigallocatechin-gallate modulates early events in huntingtin misfolding and reduces toxicity in Huntington's disease models. Hum Mol Genet 2006;15:2743-2751.

    Article  PubMed  CAS  Google Scholar 

  46. Bodles AM, El-Agnaf OM, Greer B, Guthrie DJ, Irvine GB. Inhibition of fibril formation and toxicity of a fragment of α-synuclein by an N-methylated peptide analogue. Neurosci Lett 2004;359:89-93.

    Article  PubMed  CAS  Google Scholar 

  47. Soto C, Sigurdsson EM, Morelli L, Kumar RA, Castano EM, Frangione B. β-sheet breaker peptides inhibit fibrillogenesis in a rat brain model of amyloidosis: implications for Alzheimer's therapy. Nat Med 1998;4:822-826.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Shin-ichi Muramatsu, Shinya Oishi, Nobutaka Fujii, Takashi Inui, Osamu Onodera, and Mariano Carrion-Vazquez for their helpful discussions, and Nobuhiro Fujikake and Yuma Okamoto for their technical assistance. Our work on the polyglutamine diseases is supported, in part, by Grants-in-Aid for Scientific Research on Priority Areas (Advanced Brain Science Project, and Research on Pathomechanisms of Brain Disorders to Y.N.) and by a Comprehensive Brain Science Network Award for Young Scientists (to H.A.P.) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan; by Grants-in-Aid for Scientific Research (B) (to Y.N.), (C) (to H.A.P) and Challenging Exploratory Research (to Y.N.) from the Japan Society for the Promotion of Science, Japan; by a Grant-in-Aid for the Research Committee for Ataxic Diseases (to Y.N.) from the Ministry of Health, Labor and Welfare, Japan; and by a grant from Core Research for Evolutional Science and Technology (CREST) of the Japan Science and Technology Agency (CREST) (to Y.N.).

Required Author Forms

Disclosure forms provided by the authors are available with the online version of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshitaka Nagai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 510 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popiel, H.A., Takeuchi, T., Burke, J.R. et al. Inhibition of Protein Misfolding/Aggregation Using Polyglutamine Binding Peptide QBP1 as a Therapy for the Polyglutamine Diseases. Neurotherapeutics 10, 440–446 (2013). https://doi.org/10.1007/s13311-013-0184-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13311-013-0184-7

Keywords

Navigation