Skip to main content

Advertisement

Log in

The Black Carbon Story: Early History and New Perspectives

  • Review
  • Published:
AMBIO Aims and scope Submit manuscript

Abstract

A number of recent studies have suggested that black carbon (BC), the light-absorbing fraction of soot, is next to CO2 one of the strongest contributors to the global climate change. BC heats the air, darkens the snow and ice surfaces and could contribute to the melting of Arctic ice, snowpacks, and glaciers. Although soot is the oldest known pollutant its importance in climate modification has only been recently recognized. In this article, we trace the historical developments over about three decades that changed the view of the role of BC in the environment, from a pollutant of marginal importance to one of the main climate change agents. We also discuss some of the reasons for the initial lack of interest in BC and the subsequent rigorous research activity on the role of aerosols in climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ackerman, T., and O.B. Toon. 1981. Absorption of visible radiation in atmosphere containing mixtures of absorbing and nonabsorbing particles. Applied Optics 20: 3661–3668.

    Article  CAS  Google Scholar 

  • Adams, K.M., L.I. Davis Jr, S.M. Japar, and W.R. Pierson. 1989. Real-time, in situ measurements of atmospheric optical absorption in the visible via photoacoustic spectroscopy-II. Validation for atmospheric elemental carbon aerosol. Atmospheric Environment 23: 693–700.

    Article  CAS  Google Scholar 

  • Appel, B.R., P. Colodny, and J.J. Wesolowski. 1976. Analysis of carbonaceous materials in southern California atmospheric aerosols. Environmental Science and Technology 10: 350–363.

    Article  Google Scholar 

  • Barrie, L.A., R. Hoff, and S.M. Daggupaty. 1981. The influence of midlatitudinal pollution sources on haze in the Canadian Arctic. Atmospheric Environment 15: 1407–1419.

    Article  CAS  Google Scholar 

  • Bodhaine, B.A., J.M. Harris, and G.A. Herbert. 1981. Aerosol light scattering and condensation nuclei measurements at Barrow, Alaska. Atmospheric Environment 15: 1375–1390.

    Article  Google Scholar 

  • Bond, T.C., S.J. Doherty, D.W. Fahey, P.M. Forster, T. Berntsen, B.J. DeAngelo, M.G. Flanner, S. Ghan, et al. 2012. Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research Atmospheres. doi:10.1002/jgrd.50171.

  • Brimblecombe, P. 1978. Air pollution in industrializing England. Journal of Air Pollution Control Association 28: 115–118.

    Article  CAS  Google Scholar 

  • Cachier, H., M.-P. Bremond, and A. Buat-Menard. 1989. Determination of atmospheric soot carbon with a simple thermal method. Tellus 41: 379–390.

    Google Scholar 

  • Cappa, C.D., T.B. Onasch, P. Massoli, D.R. Worsnop, T.S. Bates, E.B. Cross, P. Daidovits, J. Hakala, et al. 2012. Radiative absorption enhancements due to mixing state of atmospheric black carbon. Science 337: 1078–1081.

    Article  CAS  Google Scholar 

  • Cass, G.R., M.H. Conklin, J.J. Shah, J.J. Huntzicker, and E.S. Macias. 1984. Elemental carbon concentrations: Estimation of an historical data base. Atmospheric Environment 18: 153–162.

    Article  Google Scholar 

  • Castro, L.M., C.A. Pio, R.M. Harrison, and D.J.T. Smith. 1999. Carbonaceous a aerosol in urban and rural European atmospheres: Estimation of secondary organic carbon. Atmospheric Environment 33: 2771–2781.

    Article  CAS  Google Scholar 

  • Cess, R.D. 1983. Arctic aerosol model estimates of interactive influences upon the surface-atmosphere clear sky radiation budget. Atmospheric Environment 17: 2555–2564.

    Article  CAS  Google Scholar 

  • Chang, S.G., and T. Novakov. 1975. Formation of pollution particulate nitrogen compounds by NO-soot and NH3-soot gas-particle surface reactions. Atmospheric Environment 9: 495–504.

    Article  CAS  Google Scholar 

  • Charlson, R.J., S.E. Schwartz, J.M. Hales, R.D. Cess, J.A. Coakley Jr, J.E. Hansen, and D.J. Hofmann. 1992. Climate forcing by anthropogenic aerosols. Science 255: 423–429.

    Article  CAS  Google Scholar 

  • Chow, J.C., J.G. Watson, L.C. Pritchett, W.R. Pierson, C.A. Frazler, and R.G. Purcell. 1993. The DRI thermal/optical reflectance carbon analysis system: Description, evaluation and applications in US air quality studies. Atmospheric Environment 27A: 1185–1201.

    CAS  Google Scholar 

  • Chung, C.E., V. Ramanathan, D. Kim, and I.A. Podgorny. 2005. Global anthropogenic aerosol direct forcing derived from satellite and ground-based observations. Journal of Geophysical Research 110: D24207. doi:10.1029/2005JD006356.

    Article  Google Scholar 

  • Clarke, A.D., and K.J. Noone. 1985. Soot in Arctic snowpack: A cause for perturbation in radiative transfer. Atmospheric Environment 19: 2045–2053.

    Article  Google Scholar 

  • Dalzell, W.H., and A.F. Sarofim. 1969. Optical constants of soot and their application to heat-flux calculations. Journal of Heat Transfer 91: 100–105.

    Article  Google Scholar 

  • Dod, R.L., and T. Novakov. 1982. Application of thermal analysis and photoelectron spectroscopy for the characterization of particulate matter. In Industrial applications of surface analysis, Vol. 199, Chap. 17, eds. L.A. Casper and C.J. Powell, 397–409. American Chemical Society Symposium Series, Washington, DC.

  • Doherty, S.J., S.G. Warren, T.C. Grenfell, A.D. Clarke, and R.E. Brandt. 2010. Light absorbing impurities in Arctic snow. Atmospheric Chemistry and Physics 10: 18807–18878.

    Article  Google Scholar 

  • Friedlander, S.K. 1973. Chemical element balances and identification of air pollution sources. Environmental Science and Technology 7: 235–240.

    Article  CAS  Google Scholar 

  • Gartrell Jr., G., S.L. Heisler, and S.K. Friedlander. 1980. Relating particulate properties to sources—The results for the California aerosol. Advances in Environmental Science and Technology 9: 665–713.

    CAS  Google Scholar 

  • Grenfell, T.C., D.K. Perovich, and J.A. Ogren. 1981. Spectral albedos of an alpine snowpack. Cold Regions Science and Technology 4: 121–127.

    Article  Google Scholar 

  • Gundel, L.A., R.L. Dod, H. Rosen, and T. Novakov. 1984. The relationship between optical attenuation and black carbon concentration for ambient and source particles. The Science of the Total Environment 36: 197–202.

    Article  CAS  Google Scholar 

  • Haagen-Smit, A.J. 1952. Chemistry and physiology of Los Angeles smog. Industrial and Engineering Chemistry 44: 1342–1346.

    Article  CAS  Google Scholar 

  • Hall, S.R. 1952. Evaluation of particulate concentrations with collecting apparatus. Analytical Chemistry 24: 996–1000.

    Article  CAS  Google Scholar 

  • Hansen, J., and L. Nazarenko. 2004. Soot climate forcing via snow and ice albedos. Proceedings of the National Academy of Sciences of the United States of America 101: 423–428.

    Article  CAS  Google Scholar 

  • Hansen, A.D.A., H. Rosen, and T. Novakov. 1984. The Aethalometer: An instrument for real-time measurement of optical absorption by aerosol particles. The Science of the Total Environment 36: 191–196.

    Article  CAS  Google Scholar 

  • Hegg, D.A., J. Livinston, P.V. Hobbs, T. Novakov, and P. Russel. 1997. Chemical apportionment of aerosol column optical depth off the mid-Atlantic coast of the United States. Journal of Geophysical Research 102: 25293–25303.

    Article  CAS  Google Scholar 

  • Hidy, G.M. 1972. Aerosols and atmospheric chemistry, 348 pp. New York: Academic Press.

  • Hidy, G.M., and P.K. Mueller. 1980. The character and origins of smog aerosols. In Advances in environmental science and technology, eds. J.N. Pitts and R.L. Metcalf, 776 pp. New York: Wiley.

  • Hirdman, D., J.F. Burkhart, H. Sodemann, S. Eckhardt, A. Jeffereson, P.K. Quinn, S. Sharma, J. Strom, et al. 2010. Long-term trends of black carbon and sulphate aerosol in the Arctic, changes in atmospheric transport and source region emissions. Atmospheric Chemistry and Physics 10: 9351–9368.

    Article  CAS  Google Scholar 

  • Hoffman, A., L. Osterloh, R. Stone, A. Lampert, C. Ritter, M. Stock, P. Tunved, T. Hennig, et al. 2012. Remote sensing and in situ measurements of tropospheric aerosol, a PAMARCMiP case study. Atmospheric Environment 52: 56–66.

    Article  Google Scholar 

  • Huntzicker, J.J., R.L. Johnson, J.J. Shah, and R.A. Cary. 1982. Analysis of organic and elemental carbon in ambient aerosol by a thermal-optical method. In Particulate carbon: Atmospheric life cycle, eds. G.T. Wolff and R.L. Klimisch, 411 pp. New York: Plenum Press.

  • Jacobson, M.Z. 2002. Control of fossil-fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming. Journal of Geophysical Research 107: 4410. doi:10.1029/2001JD001376.

    Article  Google Scholar 

  • Jayne, J.T., D. Leard, C. Zhang, P. Davidovits, K.A. Smith, C.E. Kolb, and D.R. Worsnop. 2000. Development of an aerosol mass spectrometer for size and composition analysis of submicron particles. Aerosol Science and Technology 33: 49–70.

    Article  CAS  Google Scholar 

  • Jimenez, J.L., R. Canagaratna, N.M. Donahue, A.S.H. Prevot, Q. Zhang, J.H. Kroll, P.F. DeCarlo, and J.D. Allan. 2009. Evolution of organic aerosols in the atmosphere. Science 326: 1525–1529. doi:10.1126/science.1180353.

    Article  CAS  Google Scholar 

  • Lelieveld, J., P.J. Crutzen, V. Ramanathan, M.O. Andreae, C.A.M. Brenninkmeijer, T. Campos, G.R. Cass, R.R. Dickerson, et al. 2001. The Indian Ocean experiment: Widespread air pollution from south and southeast Asia. Science 291: 1031–1036.

    Article  CAS  Google Scholar 

  • Lin, C.-I., M. Baker, and R.J. Charlson. 1973. Absorption coefficient of atmospheric aerosol: A method for measurement. Applied Optics 12: 1356–1383.

    Article  CAS  Google Scholar 

  • Malissa, H., H. Puxbaum, and E. Pell. 1976. Toward a relative conductometric carbon and sulfur determination in dusts. Fresenius Journal of Analytical Chemistry 282: 109–113 (in German, English summary).

    Article  CAS  Google Scholar 

  • McNaughton, C.S., A.D. Clarke, S. Freitag, V.N. Kapustin, Y. Kondo, N. Moteki, L. Sahu, N. Takegawa, et al. 2011. Absorbing aerosol in the troposphere of the western Arctic during the 2008 ARCTAS/ARCPAC airborne field campaigns. Atmospheric Chemistry and Physics 11: 7561–7582.

    Article  CAS  Google Scholar 

  • Mueller, P.K., R.W. Mosley, and L.B. Pierce. 1972. Chemical composition of Pasadena aerosol by particle size and time of day: Carbonate and noncarbonate carbon content. Journal of Colloid and Interface Science 39: 235–239.

    Article  CAS  Google Scholar 

  • Neusüß, C., T. Gnauk, A. Plewka, H. Herrmann, and P. Quinn. 2002. Carbonaceous aerosol over the Indian Ocean: OC/EC fractions and selected specifications from size-segregated onboard samples. Journal of Geophysical Research 107: 8031.

    Article  Google Scholar 

  • Novakov, T. 1973. Chemical characterization of atmospheric pollution particulates by photoelectron spectroscopy. In Proceedings second joint conference on sensing of environmental pollutants, 197–204. Pittsburgh: Instrument Society of America.

  • Novakov, T. 1981. Microchemical characterization of aerosols. In Proceedings of the 8th international microchemical symposium, eds. H. Malissa, M. Grasserbauer, and R. Belcher, 141–165. Graz, Austria 1980. Wien: Springer.

  • Novakov, T. 1984. The role of soot in atmospheric chemistry. The Science of the Total Environment 36: 1–10.

    Article  CAS  Google Scholar 

  • Novakov, T., P.K. Mueller, A.E. Alcocer, and J.W. Otvos. 1972. Chemical states of nitrogen and sulfur by photoelectron spectroscopy. Journal of Colloid and Interface Science 39: 225–234.

    Article  CAS  Google Scholar 

  • Novakov, T., S.G. Chang, and A.B. Harker. 1974. Sulfates as pollution particulates: Catalytic formation on carbon (soot) particles. Science 186: 259–261.

    Article  CAS  Google Scholar 

  • Novakov, T., R.L. Dod, and S.G. Chang. 1976. Study of air pollution particulates by photoelectron spectroscopy. Zeitschrift fur Analytische Chemie 282: 287–290.

    Article  CAS  Google Scholar 

  • Ottar, B. 1981. The transfer of airborne pollutants to the Arctic region. Atmospheric Environment 15: 1439–1445.

    Article  CAS  Google Scholar 

  • Penner, J.E., and T. Novakov. 1996. Carbonaceous particles in the atmosphere: A historical perspective to the fifth international conference on carbonaceous particles in the atmosphere. Journal of Geophysical Research 101: 19373–19378.

    Article  CAS  Google Scholar 

  • Porch, W.M., and M.C. McCracken. 1982. Parametric study of the effects of Arctic soot on solar radiation. Atmospheric Environment 16: 1365–1371.

    Article  CAS  Google Scholar 

  • Rahn, K.A., and R.J. McCaffrey. 1980. On the origin and transport of the winter Arctic aerosol. Annals of the New York Academy of Sciences 338: 486–503.

    Article  CAS  Google Scholar 

  • Ramanathan, V., and G. Carmichael. 2008. Global and regional climate changes due to black carbon. Nature Geoscience 1: 221–226.

    Article  CAS  Google Scholar 

  • Rosen, H., and A.D.A. Hansen. 1985. Estimates of springtime soot and sulfur fluxes entering the Arctic troposphere: Implications to source regions. Atmospheric Environment 19: 2203–2207.

    Article  CAS  Google Scholar 

  • Rosen, H., and T. Novakov. 1977. Raman scattering and the characterization of atmospheric aerosol particles. Nature 266: 708–710.

    Article  CAS  Google Scholar 

  • Rosen, H., A.D.A. Hansen, L. Gundel, and T. Novakov. 1978. Identification of the optically absorbing component in urban aerosols. Applied Optics 17: 3859–3861.

    Article  CAS  Google Scholar 

  • Rosen, H., A.D.A. Hansen, R.L. Dod, and T. Novakov. 1976. Characterization of the carbonaceous component of ambient and source particulate samples by an optical absorption technique, 8–18. Lawrence Berkeley Laboratory Report LBL-68l9.

  • Rosen, H., A.D.A. Hansen, R.L. Dod, and T. Novakov. 1980. Soot in urban atmospheres: Determination by an optical absorption technique. Science 208: 741–744.

    Article  CAS  Google Scholar 

  • Rosen, H., T. Novakov, and B. Bodhaine. 1981. Soot in the Arctic. Atmospheric Environment 15: 1371–1374.

    Article  CAS  Google Scholar 

  • Rosen, H., A.D.A. Hansen, and T. Novakov. 1984. Role of graphitic carbon particles in radiative transfer in the Arctic haze. The Science of the Total Environment 36: 103–110.

    Article  CAS  Google Scholar 

  • Salam, A., H. Baueri, K. Kassin, S.M. Ullah, and H. Puxbaum. 2003. Aerosol chemical characteristics of an island site in the Bay of Bengal. Journal of Environmental Monitoring 5: 483–490.

    Article  CAS  Google Scholar 

  • Sato, M., J. Hansen, D. Koch, A. Lacis, R. Ruedy, O. Dubovik, B. Holben, M. Chin, et al. 2003. Global atmospheric black carbon inferred from AERONET. Proceedings of the National Academy of Sciences of the United States of America 100: 6319–6324.

    Article  CAS  Google Scholar 

  • Schmid, H., L. Laskas, H.J. Abraham, U. Baltensperger, V. Lavanchy, M. Bizjak, P. Burba, H. Cachier, et al. 2001. Results of the “carbon conference” international aerosol carbon round robin test stage I. Atmospheric Environment 35: 2111–2121.

    Article  CAS  Google Scholar 

  • Schnell, R.C. 1984. Arctic haze and the Arctic gas and aerosol sampling program (AGASP). Geophysical Research Letters 11: 361–364.

    Article  CAS  Google Scholar 

  • Schwartz, S.E. 1996. The whitehouse effect—shortwave radiative forcing of climate by anthropogenic aerosols: An overview. Journal of Aerosol Science 27: 359–382.

    Article  CAS  Google Scholar 

  • Schwartz, J.P., R.S. Gao, D.W. Fahey, D.S. Thomson, L.A. Watts, J.C. Wilson, J.M. Reeves, M. Darbeheshti, et al. 2006. Single-particle measurements of midlatitude black carbon and light scattering aerosols from the boundary layer to the lower stratosphere. Journal of Geophysical Research 111: D16207. doi:10.1029/2006JD007076.

    Article  Google Scholar 

  • Shaw, G.E. 1975. The vertical distribution of atmospheric aerosols at Barrow, Alaska. Tellus 27: 39–50.

    Article  Google Scholar 

  • Thomas, M.D. 1952. The present status of the development of instrumentation from the study of air pollution. Proceedings National Air Pollution Symposium 2: 16–23.

    CAS  Google Scholar 

  • Valero, P.J., T.P. Ackerman, and W.J.Y. Gore. 1983. Radiative effects of the Arctic haze. Geophysical Research Letters 10: 1184–1187.

    Article  Google Scholar 

  • Warren, S.G., and W.J. Wiscombe. 1980. A model for the spectral albedo of snow II. Snow containing atmospheric aerosols. Journal of Atmospheric Science 37: 2734–2745.

    Article  Google Scholar 

  • Wilkins, E.T. 1954. Air pollution and the London fog of December, 1952. Journal Royal Sanitary Institute 74: 1–21.

    CAS  Google Scholar 

  • Yasa, Z., N.M. Amer, H. Rosen, A.D.A. Hansen, and T. Novakov. 1979. Photo-acoustic investigations of urban aerosol particles. Applied Optics 18: 2528–2530.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work at Lawrence Berkeley Laboratory summarized above has been supported by the National Science Foundation and by the US Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tica Novakov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novakov, T., Rosen, H. The Black Carbon Story: Early History and New Perspectives. AMBIO 42, 840–851 (2013). https://doi.org/10.1007/s13280-013-0392-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13280-013-0392-8

Keywords

Navigation