Skip to main content

Advertisement

Log in

Metabolic phenotypes in triple-negative breast cancer

  • Research Article
  • Published:
Tumor Biology

Abstract

The aim of study was to investigate the metabolism of tumor and stromal cells necessary to determine differential tumor–stroma metabolic interactions according to the molecular subtypes of triple-negative breast cancer (TNBC). Tissues from 132 patients of TNBC were prepared for use as tissue microarrays (TMA). Expression of CK5/6, EGFR, claudin 3, claudin 4, claudin7, E-cadherin, AR, GGT1, STAT1, and interleukin-8 was evaluated by immunohistochemical staining using TMA to classify molecular subtypes of TNBC. In addition, immunohistochemical staining for Glut1, CAIX, BNIP3, MCT4, Beclin-1, LC3A, LC3B, and p62 was performed. According to glycolytic status determined by the immunohistochemical expression of Glut-1 and CAIX in tumor and stroma, the metabolic phenotypes of the TNBCs were defined as follows: Warburg type (tumor: glycolysis, stroma: non-glycolysis), reverse Warburg type (tumor: non-glycolysis, stroma: glycolysis), mixed metabolic type (tumor: glycolysis, stroma: glycolysis), and metabolic null type (tumor: non-glycolysis, stroma: non-glycolysis). TNBCs were classified as follows: 79 Warburg type (59.8 %), 7 reverse Warburg type (5.3 %), 24 mixed metabolic type (18.2 %), and 22 metabolic null type (16.7 %). There was no statistical significance between the metabolic phenotypes and molecular subtypes (P = 0.706). Reverse Warburg type showed the most dysfunctional mitochondrial status for stromal cells, while Warburg type showed the most functional mitochondrial status (P = 0.036). Regarding stromal autophagy status, reverse Warburg type showed the most activated status, while all of the Warburg and metabolic null types showed a non-activated status (P < 0.001). In conclusion, Warburg type was the most common metabolic phenotype in TNBC, while reverse Warburg type was the most unusual. Metabolic phenotypes did not differ among the molecular subtypes of TNBCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Warburg O. On the origin of cancer cells. Science. 1956;123:309–14.

    Article  PubMed  CAS  Google Scholar 

  2. Bonuccelli G, Tsirigos A, Whitaker-Menezes D, Pavlides S, Pestell RG, Chiavarina B, et al. Ketones and lactate "fuel" tumor growth and metastasis: evidence that epithelial cancer cells use oxidative mitochondrial metabolism. Cell Cycle. 2010;9:3506–14.

    Article  PubMed  CAS  Google Scholar 

  3. Martinez-Outschoorn UE, Balliet RM, Rivadeneira DB, Chiavarina B, Pavlides S, Wang C, et al. Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: a new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells. Cell Cycle. 2010;9:3256–76.

    Article  PubMed  CAS  Google Scholar 

  4. Pavlides S, Tsirigos A, Vera I, Flomenberg N, Frank PG, Casimiro MC, et al. Loss of stromal caveolin-1 leads to oxidative stress, mimics hypoxia and drives inflammation in the tumor microenvironment, conferring the "reverse Warburg effect": a transcriptional informatics analysis with validation. Cell Cycle. 2010;9:2201–19.

    Article  PubMed  CAS  Google Scholar 

  5. Pavlides S, Whitaker-Menezes D, Castello-Cros R, Flomenberg N, Witkiewicz AK, Frank PG, et al. The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle. 2009;8:3984–4001.

    Article  PubMed  CAS  Google Scholar 

  6. Martinez-Outschoorn UE, Pavlides S, Whitaker-Menezes D, Daumer KM, Milliman JN, Chiavarina B, et al. Tumor cells induce the cancer associated fibroblast phenotype via caveolin-1 degradation: implications for breast cancer and DCIS therapy with autophagy inhibitors. Cell Cycle. 2010;9:2423–33.

    Article  PubMed  CAS  Google Scholar 

  7. Martinez-Outschoorn UE, Trimmer C, Lin Z, Whitaker-Menezes D, Chiavarina B, Zhou J, et al. Autophagy in cancer associated fibroblasts promotes tumor cell survival: role of hypoxia, HIF1 induction and NFkappaB activation in the tumor stromal microenvironment. Cell Cycle. 2010;9:3515–33.

    Article  PubMed  CAS  Google Scholar 

  8. Kwon JE, Jung WH, Koo JS. Molecules involved in epithelial-mesenchymal transition and epithelial–stromal interaction in phyllodes tumors: implications for histologic grade and prognosis. Tumour Biology. 2012;33:787–98.

    Article  PubMed  Google Scholar 

  9. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406:747–52.

    Article  PubMed  CAS  Google Scholar 

  10. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. 2001;98:10869–74.

    Article  PubMed  CAS  Google Scholar 

  11. Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res. 2007;13:4429–34.

    Article  PubMed  Google Scholar 

  12. Perou CM. Molecular stratification of triple-negative breast cancers. Oncologist. 2011;16:61–70.

    Article  PubMed  Google Scholar 

  13. Reis-Filho JS, Tutt AN. Triple negative tumours: a critical review. Histopathology. 2008;52:108–18.

    Article  PubMed  CAS  Google Scholar 

  14. Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer. N Engl J Med. 2010;363:1938–48.

    Article  PubMed  CAS  Google Scholar 

  15. Venkitaraman R. Triple-negative/basal-like breast cancer: clinical, pathologic and molecular features. Expert Rev Anticancer Ther. 2010;10:199–207.

    Article  PubMed  CAS  Google Scholar 

  16. Rakha EA, Ellis IO. Triple-negative/basal-like breast cancer: review. Pathology. 2009;41:40–7.

    Article  PubMed  Google Scholar 

  17. Kato H, Takita J, Miyazaki T, Nakajima M, Fukai Y, Masuda N, et al. Glut-1 glucose transporter expression in esophageal squamous cell carcinoma is associated with tumor aggressiveness. Anticancer Res. 2002;22:2635–9.

    PubMed  CAS  Google Scholar 

  18. Mineta H, Miura K, Takebayashi S, Misawa K, Araki K, Misawa Y, et al. Prognostic value of glucose transporter 1 expression in patients with hypopharyngeal carcinoma. Anticancer Res. 2002;22:3489–94.

    PubMed  Google Scholar 

  19. Shaw RJ. Glucose metabolism and cancer. Curr Opin Cell Biol. 2006;18:598–608.

    Article  PubMed  CAS  Google Scholar 

  20. Tateishi U, Yamaguchi U, Seki K, Terauchi T, Arai Y, Hasegawa T. Glut-1 expression and enhanced glucose metabolism are associated with tumour grade in bone and soft tissue sarcomas: a prospective evaluation by [18 F]fluorodeoxyglucose positron emission tomography. Eur J Nucl Med Mol Imaging. 2006;33:683–91.

    Article  PubMed  CAS  Google Scholar 

  21. Choi J, Jung WH, Koo JS. Metabolism-related proteins are differentially expressed according to the molecular subtype of invasive breast cancer defined by surrogate immunohistochemistry. Pathobiology. 2013;80:41–52.

    Article  PubMed  CAS  Google Scholar 

  22. Semenza GL. Regulation of cancer cell metabolism by hypoxia-inducible factor 1. Semin Cancer Biol. 2009;19:12–6.

    Article  PubMed  CAS  Google Scholar 

  23. Hammond ME, Hayes DF, Dowsett M, Allred DC, Hagerty KL, Badve S, et al. American Society of Clinical Oncology/College Of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Clin Oncol. 2010;28:2784–95.

    Article  PubMed  Google Scholar 

  24. Wolff AC, Hammond ME, Schwartz JN, Hagerty KL, Allred DC, Cote RJ, et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol. 2007;25:118–45.

    Article  PubMed  CAS  Google Scholar 

  25. Elston CW, Ellis IO. Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology. 1991;19:403–10.

    Article  PubMed  CAS  Google Scholar 

  26. Pinheiro C, Sousa B, Albergaria A, Paredes J, Dufloth R, Vieira D, et al. GLUT1 and CAIX expression profiles in breast cancer correlate with adverse prognostic factors and MCT1 overexpression. Histol Histopathol. 2011;26:1279–86.

    PubMed  CAS  Google Scholar 

  27. Pinheiro C, Albergaria A, Paredes J, Sousa B, Dufloth R, Vieira D, et al. Monocarboxylate transporter 1 is up-regulated in basal-like breast carcinoma. Histopathology. 2010;56:860–7.

    Article  PubMed  Google Scholar 

  28. Ricketts CJ, Shuch B, Vocke CD, Metwalli AR, Bratslavsky G, Middelton L, et al. Succinate dehydrogenase kidney cancer: an aggressive example of the Warburg effect in cancer. J Urol. 2012;188:2063–71.

    Article  PubMed  CAS  Google Scholar 

  29. Witkiewicz AK, Whitaker-Menezes D, Dasgupta A, Philp NJ, Lin Z, Gandara R, et al. Using the "reverse Warburg effect" to identify high-risk breast cancer patients: stromal MCT4 predicts poor clinical outcome in triple-negative breast cancers. Cell Cycle. 2012;11:1108–17.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science and Technology (2012R1A1A1002886).

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ja Seung Koo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S., Kim, D.H., Jung, WH. et al. Metabolic phenotypes in triple-negative breast cancer. Tumor Biol. 34, 1699–1712 (2013). https://doi.org/10.1007/s13277-013-0707-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-0707-1

Keywords

Navigation