Skip to main content
Log in

T-type Cav3.2 Ca2+ channel is predominantly expressed in Xenopus laevis testis and involved in the fertilization process

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

The acrosome reaction (AR), a calcium-dependent exocytosis, is required for the mammalian fertilization process. Various ion channels, including T-type calcium channels presenting in the plasma membrane of the sperm head, play an important role in AR. In order to investigate the expression pattern and function of T-type calcium channels in Xenopus fertilization, we cloned partial cDNA sequences of cytoplasmic loops connecting domains II and III of T-type channel isoforms from the Xenopus laevis testis. The translated amino acid sequences of cloned Cav3.1 and Cav3.2 T-type channel cDNAs shared 81 and 96 % identity with those of Xenopus tropicalis, respectively. In addition, in situ hybridization showed that Cav3.1 and Cav3.2 transcripts are expressed in the testis tissues of X. laevis, with Cav3.2 transcripts more greatly expressed in testis than Cav3.1 transcripts. Pharmacological studies showed that treatment with nickel or the drug mibefradil significantly reduced the rate of fertilization in a concentration-dependent manner. Collectively, our findings suggest that Cav3.2 T-type calcium channels may play essential roles in the fertilization process of the amphibian species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arnoult C, Zeng Y, Florman HM (1996) ZP3-dependent activation of sperm cation channels regulates acrosomal secretion during mammalian fertilization. J Cell Biol 134:637–645

    Article  PubMed  CAS  Google Scholar 

  • Catterall WA (2011) Voltage-gated calcium channels. Cold Spring Harb Perspect Biol 3:a003947

    Article  PubMed  Google Scholar 

  • Cribbs LL, Lee JH, Yang J, Satin J, Zhang Y, Daud A, Barclay J, Williamson MP, Fox M, Rees M, Perez-Reyes E (1998) Cloning and characterization of alpha1H from human heart, a member of the T-type Ca2+ channel gene family. Circ Res 83:103–109

    Article  PubMed  CAS  Google Scholar 

  • Darszon A, Acevedo JJ, Galindo BE, Hernández-González EO, Nishigaki T, Treviño CL, Wood C, Beltrán C (2006) Sperm channel diversity and functional multiplicity. Reproduction 131:977–988

    Article  PubMed  CAS  Google Scholar 

  • Darszon A, Nishigaki T, Beltran C, Treviño CL (2011) Calcium channels in the development, maturation, and function of spermatozoa. Physiol Rev 91:1305–1355

    Article  PubMed  CAS  Google Scholar 

  • Escoffier J, Boisseau S, Serres C, Chen CC, Kim D, Stamboulian S, Shin HS, Campbell KP, De Waard M, Arnoult C (2007) Expression, localization and functions in acrosome reaction and sperm motility of Ca(V)3.1 and Ca(V)3.2 channels in sperm cells: an evaluation from Ca(V)3.1 and Ca(V)3.2 deficient mice. J Cell Physiol 212:753–763

    Article  PubMed  CAS  Google Scholar 

  • José O, Hernández-Hernández O, Chirinos M, González-González ME, Larrea F, Almanza A, Felix R, Darszon A, Treviño CL (2010) Recombinant human ZP3-induced sperm acrosome reaction: evidence for the involvement of T- and L-type voltage-gated calcium channels. Biochem Biophys Res Commun 395:530–534

    Article  PubMed  Google Scholar 

  • Kalt MR (1976) Morphology and kinetics of spermatogenesis in Xenopus laevis. J Exp Zool 195:393–407

    Article  PubMed  CAS  Google Scholar 

  • Kang HW, Park JY, Jeong SW, Kim JA, Moon HJ, Perez-Reyes E, Lee JH (2006) A molecular determinant of nickel inhibition in Cav3.2 T-type calcium channels. J biol Chem 281:4823–4830

    Google Scholar 

  • Kelly GM, Eib DW, Moon RT (1991) Histological preparation of Xenopus laevis oocytes and embryos. Methods Cell Biol 36:389–417

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Gomora JC, Cribbs LL, Perez-Reyes E (1999) Nickel block of three cloned T-type calcium channels: low concentrations selectively block α1H. Biophys J 77:3034–3042

    Article  PubMed  CAS  Google Scholar 

  • Lemaire P, Gurdon JB (1994) A role for cytoplasmic determinants in mesoderm patterning: cell-autonomous activation of the goosecoid and Xwnt-8 genes along the dorsoventral axis of early Xenopus embryos. Development 120:1191–1199

    PubMed  CAS  Google Scholar 

  • Lewis BB, Wester MR, Miller LE, Nagarkar MD, Johnson MB, Saha MS (2009) Cloning and characterization of voltage-gated calcium channel alpha1 subunits in Xenopus laevis during development. Dev Dyn 238:2891–2902

    Article  PubMed  CAS  Google Scholar 

  • Liévano A, Santi CM, Serrano CJ, Treviño CL, Bellvé AR, Hernández-Cruz A, Darszon A (1996) T-type Ca2+ channels and alpha1E expression in spermatogenic cells, and their possible relevance to the sperm acrosome reaction. FEBS Lett 388:150–154

    Article  PubMed  Google Scholar 

  • Nieuwkoop PD, Faber J (1967) Normal table of Xenopus laevis (Daudin): a systematical and chronological survey of the development from the fertilized egg till the end of metamorphosis. North-Holland Pub. Co., Amsterdam

  • Park JY, Ahn HJ, Gu JG, Lee KH, Kim JS, Kang HW, Lee JH (2003) Molecular identification of Ca2 + channels in human sperm. Exp Mol Med 35:285–292

    Article  PubMed  CAS  Google Scholar 

  • Perez-Reyes E (2003) Molecular physiology of low-voltage-activated T-type calcium channels. Physiol Rev 83:117–161

    PubMed  CAS  Google Scholar 

  • Santi CM, Darszon A, Hernández-Cruz A (1996) A dihydropyridine-sensitive T-type Ca2+ current is the main Ca2+ current carrier in mouse primary spermatocytes. Am J Physiol 271:C1583–C1593

    PubMed  CAS  Google Scholar 

  • Son WY, Lee JH, Lee JH, Han CT (2000) Acrosome reaction of human spermatozoa is mainly mediated by alpha1H T-type calcium channels. Mol Hum Reprod 6:893–897

    Article  PubMed  CAS  Google Scholar 

  • Son WY, Han CT, Lee JH, Jung KY, Lee HM, Choo YK (2002) Developmental expression patterns of alpha1H T-type Ca2+ channels during spermatogenesis and organogenesis in mice. Dev Growth Differ 44:181–190

    Article  PubMed  CAS  Google Scholar 

  • Stamboulian S, Kim D, Shin HS, Ronjat M, De Waard M, Arnoult C (2004) Biophysical and pharmacological characterization of spermatogenic T-type calcium current in mice lacking the CaV3.1 (alpha1G) calcium channel: CaV3.2 (alpha1H) is the main functional calcium channel in wild-type spermatogenic cells. J Cell Physiol 200:116–124

    Article  PubMed  CAS  Google Scholar 

  • Wennemuth G, Westernbrook RE, Xu T, Hille B, Babcock DF (2000) CaV2.2 and CaV2.3 (N- and R-type) Ca2 + channels in depolarization-evoked entry of Ca2+ into mouse sperm. J Biol Chem 275:21210–21217

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Priority Research Centers Program 2012-0006690 and Basic Science Research Program 2009-0087964 through the National Research Foundation of Korea and a Sogang University Research Grant (201214003) to JH Lee and BG Ju.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bong-Gun Ju or Jung-Ha Lee.

Additional information

Jee-Yoon Shin and Soyoung Lee equally contributed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, JY., Lee, S., Seo, H. et al. T-type Cav3.2 Ca2+ channel is predominantly expressed in Xenopus laevis testis and involved in the fertilization process. Genes Genom 35, 197–203 (2013). https://doi.org/10.1007/s13258-013-0072-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-013-0072-x

Keywords

Navigation