Skip to main content
Log in

Probiotic ice cream: viability of probiotic bacteria and sensory properties

  • Review Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Ice cream is a dairy product with good potential to act as a food carrier for probiotic bacteria. The incorporation of probiotic bacteria into ice cream is highly advantageous since, in addition to making a functional healthy food, ice cream in itself contains beneficial substances such as dairy raw materials, vitamins and minerals, and is consumed by the general population. Also, compared with fermented milks as a vehicle, ice cream supports considerably greater viability of probiotic strains during production and especially storage. However, losses in the viability of probiotic bacteria in ice cream unavoidably occur during product formulation, processing, storage and melting. During these stages, probiotic cells are subjected to different stresses related to pH, acidity, redox potential, freezing, oxygen (especially in overrun processing), sugar concentration and osmotic effects, hydrogen peroxide, antagonistic impact of co-cultures (in fermented ice creams), and mechanical shearing. It seems that the rate of loss of probiotic cells is greater during the freezing process than during storage. Practicing methods such as selection and application of oxygen-resistant probiotic strains, elimination of molecular oxygen (using oxygen-scavenging components, packaging material that is impermeable to oxygen as well as thicker packaging materials and active packaging systems), applying severe heat treatment, using microencapsulation techniques, and adjusting the product formulation (e.g., fortification of milk with nutrients and prebiotics) can increase the viability of probiotics in the final product. Supplementation of ice cream with probiotic bacteria has been found to have little effect on its flavor, texture or other sensory characteristics. There are also many ways to improve the sensory attributes of the product to compensate for any changes that do occur. This article reviews the viability of probiotic bacteria in ice cream and the main methods used to improve their viability and the sensory characteristics of probiotic ice cream.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Akalin AS, Erişir D (2008) Effects of inulin and oligofructose on the rheological characteristics and probiotic culture survival in low-fat probiotic ice cream. J Food Sci 73:184–188

    Article  Google Scholar 

  • Akin S (2005) Effects of inulin and different sugar levels on viability of probiotic bacteria and the physical and sensory characteristics of probiotic fermented ice cream. Milchwisssenschaft 60:297–301

    CAS  Google Scholar 

  • Akin MB, Akin MS, Kirmaci Z (2007) Effects of inulin and sugar levels on the viability of yogurt and probiotic bacteria and the physical and sensory characteristics in probiotic ice cream. Food Chem 104:93–99

    Article  CAS  Google Scholar 

  • Alamprese C, Foschino R, Rossi M, Pompei C, Savani L (2002) Survival of Lactobacillus johnsonii La1 and influence of its addition in retail-manufactured ice cream produced with different sugar and fat concentrations. Int Dairy J 12:201–208

    Article  CAS  Google Scholar 

  • Alamprese C, Foschino R, Rossi M, Pompei C, Corti S (2005) Effects of Lactobacillus rhamnosus CG addition in ice cream. Int J Dairy Technol 58:200–206

    Article  Google Scholar 

  • Aryana KJ, Summers M (2006) Probiotic fat-free, no sugar added ice cream. Milchwissenchaft 61:84–187

    Google Scholar 

  • Başyğit G, Kuleaşan H, Karahan AG (2006) Viability of human-derived probiotic lactobacilli in ice cream with sucrose and aspartame. J Ind Microbiol Technol 33:96–800

    Google Scholar 

  • Blanchette L, Roy Q, Belanger G, Gauthier S (1996) Production of cottage cheese using dressing fermented by bifidobacteria. J Dairy Sci 79:8–15s

    Article  CAS  Google Scholar 

  • Champagne CP, Gardner NJ (2005) Challenges in the addition of probiotic cultures to foods. Crit Rev Food Sci Nutr 45:61–84

    Article  PubMed  CAS  Google Scholar 

  • Champagne CP, Rastall RA (2009) Some technological challenges in the addition of probiotic bacteria to foods. In: Charalampopoulos D, Rastall RA (eds) Prebiotics and probiotics science and technology. Springer, Berlin, pp 763–806

    Google Scholar 

  • Christianesen PS, Edelten D, Kristiansen JR, Nielsen EW (1996) Some properties of ice cream containing Bifidobacterium bifidum and Lactobacillus acidophilus. Milchwissenschaft 51:502–504

    Google Scholar 

  • Crittenden RG, Morris LF, Harvey ML, Tran LT, Mitchell HL, Playne MJ (2001) Selection of a Bifidubacterium strain to complement resistant starch in synbiotic yoghurt. J Appl Microbiol 90:268–278

    Article  PubMed  CAS  Google Scholar 

  • Cruz AG, Faria JAF, Van Dender AGF (2007) Packaging system and probiotic dairy foods. Food Res Int 40:951–956

    Article  Google Scholar 

  • Cruz AG, Cadena RS, Walter EHM, Mortazavian AM, Granato D, Faria, JAF, Bolini HMA (2010) Sensory analysis: relevance for prebiotic, probiotic and symbiotic product development. Compr Rev Food Sci Saf 9:358–373

    Google Scholar 

  • Dave RI, Shah NP (1998) Ingredient supplementation effects on viability of probiotic bacteria in yogurt. J Dairy Sci 81:2804–2816

    Article  PubMed  CAS  Google Scholar 

  • Davidson RH, Duncan SE, Hackney CR, Eigel WN, Boling JW (2000) Probiotic culture survival and implications in fermented frozen yoghurt characteristics. J Dairy Sci 83:666–673

    Article  PubMed  CAS  Google Scholar 

  • Davies R, Obafemi A (1985) Response of micro-organisms to freeze-thaw stress. In: Robinson RK (ed) Microbiology of frozen foods. Elsevier, pp 83–107

    Google Scholar 

  • El-Nagar G, Clowes G, Tudorica CM, Kuri V (2002) Rheological quality and stability of yog-ice cream with added inulin. Int J Dairy Technol 55:89–93

    Article  CAS  Google Scholar 

  • El-Shazly A, El-Tahra MAA, Abo-Sera MM (2004) Effect of different methods for the manufacture of frozen yogurt on its properties. Egyptian Conference for Dairy Science Technology, Cairo, 9–11 October 2004, Research Papers I, pp 183–194

  • Fávaro-Trindade CS, Bernardi S, Bodini RB, de Carvalho Balieiro JC, de Almeida E (2006) Sensory acceptability and stability of probiotic microorganisms and vitamin C in fermented acerola (Malpigha emarginata DC.) ice cream. J Food Sci 71:492–495

    Article  Google Scholar 

  • Fávaro-Trindade CS, Balieiro JCC, Dias PF, Sanino FA, Boschini C (2007) Effects of culture, pH and fat concentration on melting rate and sensory characteristics of probiotic fermented yellow mombin (Spondias mombin L) ice creams. Food Sci Technol Int 13:285–291

    Article  Google Scholar 

  • Franck A (2002) Technological functionality of inulin and oligofructose. Br J Nutr 2:287–291

    Article  Google Scholar 

  • Fuller R (1989) Probiotics in man and animals. J Appl Bacteriol 66:365–378

    PubMed  CAS  Google Scholar 

  • Gardiner GE, Ross RP, Kelly PM, Stanton C (2002) Microbiology of therapeutic milks. In: Robinson RK (ed) Dairy microbiology handbook. Wiley, New York, pp 431–478

    Google Scholar 

  • Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125:1401–1412

    PubMed  CAS  Google Scholar 

  • Gibson GR, Rabiu B, Rycroft CE, Rastall RA (2004) Trans-galactooligosaccharides as prebiotics. In: Shortt C, Brien JO (eds) Handbook of functional dairy products. CRC, Boca Raton, pp 91–109

    Google Scholar 

  • Gill CO (2006) Microbiology of frozen foods. In: Da-Wen Boca S (ed) Handbook of frozen food processing and packaging. CRC, Boca Raton, pp 85–100

    Google Scholar 

  • Godward G, Kailasapathy K (2000) Viability and survival of free, encapsulated and co-encapsulated probiotic bacteria in ice cream. Milchwissenschaft 58:161–164

    Google Scholar 

  • Godward G, Sultana K, Kailasapathy K, Peiris P, Arumugaswamy R, Reynolds N (2000) The importance of strain selection on the viability of probiotic bacteria in dairy foods. Milchwissenschaft 55:441–445

    CAS  Google Scholar 

  • Gomes AMP, Malcata FX (1999) Bifidobacterium spp and Lactobacillus acidophilus: biological and theraputical revalant for use a probiotics. Trends Food Sci Technol 10:139–157

    Article  CAS  Google Scholar 

  • Hagen M, Narvhus JA (1999) Production of ice cream containing probiotic bacteria. Milchwissenschaft 54:265–268

    CAS  Google Scholar 

  • Halsted CH (2003) Dietary supplements and functional foods: 2 sides of a coin? Am J Clin Nutr 77(Suppl):1001S–1007S

    PubMed  CAS  Google Scholar 

  • Hamed AI, Zedan MA, Salem OM, Moussa AM, Yousef ETA (2004) Impact of frozen yoghurt ingredients on its quality and survival of bifidobacteria. ii. Effect of milk solids not fat sources. In: Proceedings of the Egyption Conference for Dairy Science and Technology: Milk and Dairy Products for a Healthly Future, 9–11 October, pp 227–242

  • Haynes IN, Playne MJ (2002) Survival of probiotic cultures in low fat ice cream. Aust J Dairy Technol 57:10–14

    Google Scholar 

  • Hekmat S, McMahon D (1992) Survival of Lactobacillus acidophilus and Bifidobacterium bifidum in ice cream for use as a probiotic food. J Dairy Sci 75:1415–1422

    Article  PubMed  CAS  Google Scholar 

  • Holzaspfel WH, Schillinger U (2001) Introduction to pre- and probiotics. Food Res Int 35:109–116

    Article  Google Scholar 

  • Homayouni A, Azizi A, Ehsani MR, Yarmand MS, Razavi SH (2008a) Effect of microencapsulation and resistant starch on the probiotic survival and sensory properties of symbiotic ice cream. Food Chem 111:50–55

    Article  CAS  Google Scholar 

  • Homayouni A, Ehsani MR, Azizi A, Razavi SH, Yarmand MS (2008b) Growth and survival of some probiotic strains in simulated ice cream conditions. J Appl Sci 8:379–382

    Article  Google Scholar 

  • Ishibashi N, Shimamura S (1993) Bifidobacteria: research and development in Japan. Food Technol 47:126–136

    Google Scholar 

  • Jay JM, Loessner MJ, Golden DA (2005) Modern food microbiology. Springer, New York

    Google Scholar 

  • Kailasapathy K, Sultana K (2003) Survival of β-d-galactosidase activity of encapsulated and free Lactobacillus acidophilus and Bifidobacterium lactis in ice cream. Aust J Dairy Technol 58:223–227

    CAS  Google Scholar 

  • Kawasaki S, Mimura T, Satoh S, Takeda K, Nimura Y (2006) Response of the microaerophilic Bifidobacterium species, B. boum and B. thermolum, to oxygen. Appl Environ Microbiol 72:6854–6858

    Article  PubMed  CAS  Google Scholar 

  • Khosrokhavar R, Mortazavian AM (2010) Effects of probiotic-containing microencapsules on viscosity, phase separation and sensory attributes of drink based on fermented milk. Milchwissenschaft 65:177–179

    Google Scholar 

  • Korbekandi H, Mortazavian AM, Iravani S (2011) Technology and stability of probiotic in fermented milks. In: Shah N, Cruz AG, Faria JAF (eds) Probiotic and prebiotic foods: technology, stability and benefits to human health. Blackwell, Oxford (in press)

  • Krasaekoopt W, Bhandari B, Deeth H (2003) Evaluation of encapsulation techniques of probiotics for yoghurt. Int Dairy J 13:3–13

    Article  CAS  Google Scholar 

  • Kurman JA, Rasic JL (1991) The health potential of products containing bifidobacteria. In: Robinson RK (ed) Therapeutic properties of functional milks. Elsevier, London, pp 117–158

    Google Scholar 

  • Lankaputhra WEV, Shah NP (1996) A simple method for selective enumeration of Lactobacillus acidophilus in yogurt supplemented with L. acidophilus and Bifidobacterium spp. Milchwissenschaft 51:446–451

    CAS  Google Scholar 

  • Laroia S, Martin JH (1991) Effect of pH on survival of Bifidobacterium bifidum and Lactobacillus acidophilus in frozen fermented desserts. Cult Dairy Prod J 26:3–21

    Google Scholar 

  • Lee KI, Heo TR (2000) Survival of Bifidobacterium longum immobilized in calcium alginate beads in simulated gastric juices and bile salt solution. Appl Environ Microbiol 66:869–973

    Article  PubMed  CAS  Google Scholar 

  • Loo JV, Cummings J, Delzenne N, Englyst H, Franck A, Hopkins M (1999) Functional food properties of non-digestible oligosaccarides: a consensus report from the ENDO project (DGXII AIRII-CT94-1095). Br J Nutr 81:121–132

    PubMed  Google Scholar 

  • Magariños H, Selaive S, Costa M, Flores M, Pizarro O (2007) Viability of probiotic microorganisms (Lactobacillus acidophilus La-5 and Bifidobacterium animalis ssp. lactis Bb-12) in ice cream. Int J Dairy Technol 60:128–134

    Article  Google Scholar 

  • McFarland LV, Elmer GW (2006) Properties of evidence-based probiotics for human health. In: Goktepe I, Juneja VK, Ahmedna M (eds) Probiotics in food safety and human health. Taylor and Francis, New York, pp 109–138

    Google Scholar 

  • Medici M, Vinderola CG, Perdigon G (2004) Gut mucosal immunomodulation by probiotic fresh cheese. Int Dairy J 14:611–618

    Article  Google Scholar 

  • Miller CW, Nguyen MH, Rooney M, Kailasapthy K (2003) The control of dissolved oxygen content in probiotic yogurts by alternative packing materials. Packag Technol Sci 16:61–67

    Article  CAS  Google Scholar 

  • Mizota T (1996) Functional and nutritional foods containing bifidogenic factors. Bull Int Dairy Found 313:31–35

    CAS  Google Scholar 

  • Modler H, McKellar R, Goff H, Mackie D (1990) Using ice cream as a mechanism to incorporate bifidobacteria and fructooligosaccharides into the human diet. Cult Dairy Prod J 25:4–9

    CAS  Google Scholar 

  • Mortazavian AM, Sohrabvandi S (2006) Probiotics and food probiotic products; based on dairy probiotic products. Eta, Tehran

    Google Scholar 

  • Mortazavian AM, Razavi SH, Ehsani MR, Sohrabvandi S (2007) Principles and methods of microencapsulation of probiotic microorganisms. Iran J Biotechnol 5:1–18

    CAS  Google Scholar 

  • Mortazavian AM, Ehsani MR, Azizi A, Razavi SH, Mousavi SM, Sohrabvandi S, Reinheimer JA (2008) Viability of calcium-alginate-microencapsulated probiotic bacteria in Iranian yogurt drink (Doogh) during refrigerated storage and under simulated gastrointestinal conditions. Aust J Dairy Technol 63:24–29

    Google Scholar 

  • Mortazavian AM, Khosrokhvar R, Rastegar H, Mortazaei GR (2010) Effects of dry matter standardization order on biochemical and microbiological characteristics of freshly made probiotic Doogh (Iranian fermented milk drink). Ital J Food Sci 22:98–102

    CAS  Google Scholar 

  • Mortazavian AM, Mohammadi R, Cruz AG, Faria JAF (2011) Technology and stability of probiotics in dairy desserts. In: Shah NP, Cruz AG, Faria JAF (eds) Probiotic and prebioticfFoods: technology, stability and benefits to human health. Nova Science Publishing Ltd (in press)

  • Niness KR (1999) Inulin and oligofructose: what are they? J Nutr 129:1402–1406

    Google Scholar 

  • Oliveira MN, Sodini I, Remeuf F, Corrieu G (2001) Effect of milk supplementation and culture composition on acidification, textural properties and microbiological stability of fermented milks containing probiotic bacteria. Int Dairy J 11:935–942

    Article  CAS  Google Scholar 

  • Palframan R, Gibson GR, Rastall RA (2003) Development of a quantitative tool for the comparison of the prebiotic effect of dietary oligosaccharides. Lett Appl Microbiol 37:281–284

    Article  PubMed  CAS  Google Scholar 

  • Picot A, Lacroix C (2003) Effect of micronization on viability and thermotolerance of probiotic freeze-dried cultures. Int Dairy J 13:455–462

    Article  Google Scholar 

  • Rao HGR, Prakash AS (2004) Development of probiotic kulfi (Indian ice cream). Indian Dairyman 56:57–64

    Google Scholar 

  • Ravula RR, Shah NP (1998) Effect of acid casein hydrolyzates and cysteine on the viability of yogurt and probiotic bacteria in fermented frozen dairy desserts. Aust J Dairy Technol 53:174–179

    Google Scholar 

  • Rybka S, Kailasapathy K (1995) The survival of culture bacteria in fresh and freeze-dried AB yoghurts. Aust J Dairy Technol 50:51–57

    Google Scholar 

  • Rycroft CE, Jones MR, Gibson GR, Rastall RA (2001) A comparative in vitro evaluation of the fermentation properties of prebiotic oligosaccharides. J Appl Microbiol 91:878–887

    Article  PubMed  CAS  Google Scholar 

  • Saarela M, Mogensen G, Fonden R, Matto J, Mattila-Sandholm T (2000) Probiotic bacteria: safety, functional and technological properties. J Biotechnol 84:197–215

    Article  PubMed  CAS  Google Scholar 

  • Salem MMF, Fathi FA, Awad RA (2005) Production of probiotic ice cream. Pol J Food Sci Nutr 55:267–271

    Google Scholar 

  • Sangeetha PT, Ramesh MN, Prapulla SG (2005) Recent trends in the microbial production, analysis and application of fructooligosaccharides. Trends Food Sci Technol 16:442–457

    Article  CAS  Google Scholar 

  • Saxelin M (1997) Lactobacillus GG—a human probiotic strain with thorough clinical documentation. Food Rev Int 13:293–313

    Article  Google Scholar 

  • Saxelin B, Grenov U, Svensson R, Fonden R, Reniero T, Mattila-Sandholm T (1999) The technology of probiotics. Trends Food Sci Technol 10:387–392

    Article  CAS  Google Scholar 

  • Schaller-Povolny LA, Smith DE (2001) Viscosity and freezing point of a reduced fat ice cream mix as related to inulin content. Millchwissenschaft 56:25–29

    CAS  Google Scholar 

  • Scheinbach S (1998) Probiotics: functionality and commercial status. Biotechnol Adv 16:581–608

    Article  PubMed  CAS  Google Scholar 

  • Schmidt KA, Lundy A, Reynolds J, Yee LN (1993) Carbohydrate or protein based fat mimicker effects on ice milk proteins. J Food Sci 58:761–763

    Article  CAS  Google Scholar 

  • Shah NP (2000) Probiotic bacteria: selective enumeration and survival in dairy products. J Dairy Sci 83:894–907

    Article  PubMed  CAS  Google Scholar 

  • Shah NP (2007) Functional cultures and health benefits. Int Dairy J 17:1262–1277

    Article  Google Scholar 

  • Shah NP, Ravula R (2000) Microencapsulation of probiotic bacteria and their survival in frozen fermented dairy desserts. Aust J Dairy Technol 55:139–144

    Google Scholar 

  • Shah NP, Ravula R (2004) Selling the cells in desserts. Dairy Ind Int 69:31–32

    Google Scholar 

  • Sheu TY, Marshall RT (1993) Microencapsulation of Lactobacilli in calcium alginate gels. J Food Sci 54:557–561

    Article  Google Scholar 

  • Sofjan R, Hartel RW (2004) Effects of overrun on structural and physical characteristics of ice cream. Int Dairy J 14:255–262

    Article  Google Scholar 

  • Spiegel JE, Rose R, Karabell P, Frankos VH, Schmitt DF (1994) Safety and benefits of fructooligosaccharides as food ingredients. Food Technol 48:85–89

    CAS  Google Scholar 

  • Stanton C, Desmond C, Coakley M, Collins JK, Fitzgerald G, Ross P (2003) Challenges facing development of probiotic-containing functional foods. In: Mazza G (ed) Handbook of fermented functional foods. CRC, Boca Raton, pp 27–58

    Chapter  Google Scholar 

  • Steenson LR, Klaenhammer TR, Swaisgood HE (1987) Calcium alginate-immobilized cultures of lactic streptococci are protected from attack by lytic bacteriophage. J Dairy Sci 70:1121–1127

    Article  PubMed  CAS  Google Scholar 

  • Stone H, Sidel JL (2004) Sensory evaluation practices, 3rd edn. London, Elsevier

    Google Scholar 

  • Stoon AE (2002) The top 10 functional food trends: the next generation. Food Technol 56:32–37

    Google Scholar 

  • Sultana K, Godward G, Reynolds N, Arumugaswamy R, Peiris P, Kailasapathy K (2000) Encapsulation of probiotic bacteria with alginate-starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt. Int J Food Microbiol 62:47–55

    Article  PubMed  CAS  Google Scholar 

  • Sunohara H, Ohno T, Shibata N, Seki K (1995) Process for producing capsule and capsule obtained thereby. US Patent 5:478–570

    Google Scholar 

  • Takahashi N, Xiao JZ, Miyaji K, Iwatsuki K (2007) H+-ATPase in the acid tolerance of Bifidobacterium longum. Milchwissenschaft 62:151–153

    CAS  Google Scholar 

  • Talwalkar AI, Kailasapathy KA (2003) Effect of microencapsulation on oxygen toxicity in probiotic bacteria. Aust J Dairy Technol 58:36–39

    Google Scholar 

  • Talwalkar AI, Kailasapathy KA (2004) The role of oxygen in the viability of probiotic bacteria with reference to L. acidophilus and Bifidobacterium spp. Curr Issues Intest Microbiol 5:1–8

    PubMed  CAS  Google Scholar 

  • Talwalkar AI, Miller CW, Kailasapathy K, Nugyen MH (2004) Effect of packaging conditions and dissolved oxygen on the survival probiotic bacteria in yoghurt. Int J Food Sci Technol 39:605–611

    Article  CAS  Google Scholar 

  • Tamime AY, Saarela M, Sondergaard AK, Mistry VV, Shah NP (2005) Production and maintenance of viability of probiotic microorganisms in dairy products. In: Tamime AY (ed) Probiotic dairy products. Blackwell, Oxford, pp 39–72

    Google Scholar 

  • Tuorila H, Cardello AV (2002) Consumer responses to an off flavour in juice in the presence of specific health claims. Food Qual Prefer 13:561–569

    Article  Google Scholar 

  • Turgut T, Cakmakci S (2009) Investigation of the possible use of probiotics in ice cream manufacture. Int J Dairy Technol 62:444–451

    Article  Google Scholar 

  • Vardar NB, Öksüz Ö (2007) Artisan strawberry ice cream made with supplementation of Lactococci or Lactobacillus acidophilus. Ital J Food Sci 19:403–411

    CAS  Google Scholar 

  • Vasiljevic T, Shah NP (2008) Probiotics—from Metchnikoff to bioactives. Int Dairy J 18:714–728

    Article  CAS  Google Scholar 

  • Vinderola CG, Bailo N, Reinheimer JA (2000a) Survival of probiotic microflora in Argentinian yoghurts during refrigerated storage. Food Res Int 33:97–102

    Article  CAS  Google Scholar 

  • Vinderola CG, Prosello W, Ghiberto D, Reinheimer JA (2000b) Viability of probiotic (Bifidobacterium, Lactobacillus acidophilus and Lactobacillus casei) and nonprobiotic microflora in Argentinian cheese. J Dairy Sci 83:1905–1911

    Article  PubMed  CAS  Google Scholar 

  • Wenrong S, Griffiths MW (2000) Survival of bifidobacteria in yogurt and simulated gastric juice following immobilization in gellan-xanthan beads. Int J Food Microbiol 61:17–26

    Article  Google Scholar 

  • Yackinous C, Wee C, Guinard JX (1999) Internal preference mapping of hedonic ratings for ranch salad dressings varying in fat and garlic flavour. Food Qual Prefer 10:401–409

    Article  Google Scholar 

  • Ziemer CR, Gibson GR (1998) An overview of probiotics, prebiotics and synbiotics in the functional food concept: perspective and future strategies. Int Dairy J 8:473–479

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Mohammad Mortazavian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohammadi, R., Mortazavian, A.M., Khosrokhavar, R. et al. Probiotic ice cream: viability of probiotic bacteria and sensory properties. Ann Microbiol 61, 411–424 (2011). https://doi.org/10.1007/s13213-010-0188-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-010-0188-z

Keyword

Navigation