Skip to main content
Log in

Fractional derivatives generalization of Einstein’s field equations

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper we set up a fractional generalization of Einstein’s field equations based on fractional derivatives inside the geodesic action integral and obtained non-local fractional Einstein’s field equations. More specifically, the total derivative of any generalized coordinate is considered to take the special form \( D = D_{classical} + kD_{fractional} ,k \) is a real parameter, \( D_{classical} \) is the classical derivative operator and \( D_{fractional} \) is the modified left Riemann–Liouville fractional derivative operator so that the classical result of the calculus of variations is considered as a particular case. Many attractive astrophysical and cosmological solutions have been obtained and discussed in some details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J Moffat Phys. Rev. D41 1177 (1990)

    MathSciNet  ADS  Google Scholar 

  2. R B Zhang Phys. Lett. B209 229 (1988)

    ADS  Google Scholar 

  3. M A Rajabpour J. High Energy Phys. 06 076 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  4. R Herrmann Fractional Calculus-An Introduction for Physicists (Singapore: World Scientific) (2011)

  5. E Goldfain Commun. NonLinear Sci. Numer. Simul. 13 1397 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. A R El-Nabulsi Am. J. Eng. Appl. Sci. 4 133 (2010)

    Google Scholar 

  7. A R El-Nabulsi Chaos Soliton. Fract. 42 2384 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  8. A R El-Nabulsi Appl. Math Comput. 217 9492 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. A R El-Nabulsi Appl. Math. Lett. 24 1647 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. A R El-Nabulsi and D F M Torres J. Math. Phys. 49 053521 (2008)

    Article  MathSciNet  Google Scholar 

  11. K B Oldham and J Spanier The fractional calculus (New York: Academic Press) (1974)

    MATH  Google Scholar 

  12. S Samko, A Kilbas and O Marichev Fractional Integrals and Derivatives: Theory and Applications (New York: Gordon and Breach) (1993)

    Google Scholar 

  13. K S Miller and B Ross An Introduction to the Fractional Calculus and Fractional Differential Equations (New York: Wiley) (1993)

    MATH  Google Scholar 

  14. I Podlubny An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and some of Their Applications (New York: Academic Press) (1999)

    MATH  Google Scholar 

  15. R Hilfer Applications of Fractional Calculus in Physics (New Jersey: Word Scientific Publishing Co.) (2000)

  16. R Goreno and F Mainardi Fractional Calculus: Integral and Differential Equations of Fractional Orders, Fractals and Fractional Calculus in Continuum Mechanics (New York: Springer) (1997)

    Google Scholar 

  17. A A Kilbas, H H Srivastava and J J Trujillo Theory and Applications of Fractional Differential Equations (The Netherlands: Elsevier) (2006)

    MATH  Google Scholar 

  18. D Baleanu, B Ziya Guvenc and J A T Machado New Trends in Nanotechnology and Fractional Calculus Applications (New York: Springer) (2009)

    Google Scholar 

  19. R Caponetto, G Dongola, L Fortuna and I Petras Fractional Order Systems: Modeling and Control Applications (Singapore: World Scientific) (2010)

  20. M D Ortigueira and J A Tenreiro Machado Signal Process. 86 2503 (2006)

    Article  MATH  Google Scholar 

  21. M D Ortigueira and J A T Machado J. Vib. Control 14 1253 (2008)

    Article  MathSciNet  Google Scholar 

  22. M D Ortigueira and J A Tenreiro Machado ASME J. Comput. Nonlinear Dyn. 3 2 (2008)

    Google Scholar 

  23. M D Roberts arXiv: 0909.1171 (2009)

  24. J Munkhammar arXiv: 1003.4981 (2010)

  25. A R El-Nabulsi Rom. J. Phys. 52 467 (2007)

    MathSciNet  MATH  Google Scholar 

  26. A R El-Nabulsi Rom. Rep. Phys. 59 763 (2007)

    Google Scholar 

  27. A R El-Nabulsi Fiz. B16 167 (2007)

    ADS  Google Scholar 

  28. A R El-Nabulsi Rom. J. Phys. 52 705 (2007)

    MathSciNet  MATH  Google Scholar 

  29. A R El-Nabulsi Fiz. B19 103 (2010)

    Google Scholar 

  30. A R El-Nabulsi Commun. Theor. Phys. 54 16 (2010)

    Article  ADS  MATH  Google Scholar 

  31. U Debnath, M Jamil and S Chattopadhyay Int. J. Theor. Phys. 51 812 (2012)

    Article  MATH  Google Scholar 

  32. U Debnath, S Chattopadhyay and M Jamil arXiv: 1107.0541 (2011)

  33. M Jamil, M A Rashid, D Momeni O Razina and K Esmakhanova J. Phys. Conf. Ser. 354 012008 (2012)

    Article  ADS  Google Scholar 

  34. V K Shchigolev Commun. Theor. Phys. 56 389 (2011)

    Article  MATH  Google Scholar 

  35. C Calcagni J. High Energy Phys. 01 065 (2012)

    Google Scholar 

  36. T Odzijewicz and D F M Torres Math. Balkanica 26 191 (2012)

    MathSciNet  Google Scholar 

  37. G Jumarie J. Appl. Math. Comput. 24 31 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. G Jumarie Appl. Math. Lett. 22 378385 (2009)

    Google Scholar 

  39. C F L Godinho, J Weberszpil, and J A Helayel-Neto Chaos, Solitons & Fractals 45 765 (2012)

  40. S Weinberg Gravitation and Cosmology (NY: Wiley) (1972)

    Google Scholar 

  41. P Jones Int. J. Mod. Phys. D16 1871 (2007)

    ADS  Google Scholar 

  42. E W Grafarend Studia Geophys. Geodaetica 44 364 (2000)

    Article  Google Scholar 

  43. H Yilmaz Ann. Phys. 81 179 (1973)

    Article  ADS  Google Scholar 

  44. H Yilmaz Phys. Rev. 11 1417 (1958)

    Article  MathSciNet  ADS  Google Scholar 

  45. P E Williams Aperion 15 294 (2008)

    Google Scholar 

  46. M Leclerc Class Quantum Gravity 23 4013 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. A J Tolley and D H Wesley Phys. Rev. D72 124009 (2005)

    MathSciNet  ADS  Google Scholar 

  48. S Hossenfelder, D J Schwarz and W Greiner Class Quantum. Gravity 20 2337 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  49. U Seljak and M Zaldarriaga Phys. Rev. D60 043504 (1999)

    ADS  Google Scholar 

  50. P G Krastev and B A Li Phys. Rev. C76 055804 (2007)

    ADS  Google Scholar 

  51. E V Pitjeva and N P Pitjev arXiv: 1108.0246 (2011)

  52. H Stefancic Phys. Lett. B586 5 (2004)

    ADS  Google Scholar 

  53. J D Barrow Phys. Lett. B235 40 (1990)

    MathSciNet  ADS  Google Scholar 

  54. W Schieber PHILICA.COM 235 (2011)

  55. S Perlmutter et al., Astrophys. J. 517 565 (1999)

  56. A G Riess et al., Astron. J. 116 1009 (1998)

  57. D N Spergel et al., Astrophys. J. Suppl.148 175 (2003)

    Google Scholar 

  58. M Li, X D Li, S Wang and Y Wang Commun. Theor. Phys. 56 525 (2011)

    Article  ADS  MATH  Google Scholar 

  59. W Hu Ann. Phys. 303 203 (2003)

    Article  ADS  MATH  Google Scholar 

  60. A Ghosh and P Mitra Indian J. Phys. 80 867 (2006)

    Google Scholar 

  61. A R El-Nabulsi Indian J. Phys. 86 763 (2012)

    Article  ADS  Google Scholar 

  62. P Das and A Deshmakukhya Indian J. Phys. 84 617 (2010)

    Article  Google Scholar 

  63. S Kalita, H L Duorah and K Duorah Indian J. Phys. 84 629 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to thank the Key Laboratory of Numerical Simulation of Sichuan Province for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. El-Nabulsi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Nabulsi, A.R. Fractional derivatives generalization of Einstein’s field equations. Indian J Phys 87, 195–200 (2013). https://doi.org/10.1007/s12648-012-0201-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-012-0201-4

Keywords

PACS Nos.

Navigation