Skip to main content
Log in

Amine inversion effects on the IR spectra of aniline in the gas phase and cold inert gas matrixes

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The mid-infrared spectrum of aniline vapour is reinvestigated, and the IR spectrum of the compound in solid nitrogen matrix under a cryogenic condition is measured for the first time. A thorough assignment of many features of the vapour spectrum, particularly those related to amine inversion mode, is suggested. By use of PGOPHER fitting of the rotational band contours in the fingerprint region, the amine inversion tunnelling splitting at v = 1 level of NH2 scissoring and C–N bending vibrations in the vapour spectrum are identified. Our analysis reveals that excitation of one quantum of NH2 scissoring results in lowering of the tunnelling barrier, whereas, the barrier is increased upon excitation of the C–N bending. Comparison of the spectra recorded in nitrogen and argon matrixes reveal that the former hinders the NH2 inversion and consequently, transitions corresponding to higher quanta of this mode are absent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. N W Larsen, L L Hansen and F M Nicolaisen Chem. Phys. Lett. 43 584 (1976)

    Article  ADS  Google Scholar 

  2. R A Kydd and P J Krueger Chem. Phys. Lett. 49 539 (1977)

    Article  ADS  Google Scholar 

  3. T Cvita, J M Hollas and G H Kirby Mol. Phys. 19 305 (1970)

    Article  ADS  Google Scholar 

  4. J M Hollas, M R Howson, T Ridley and L Halonen Chem. Phys. Lett. 98 611 (1983)

    Article  ADS  Google Scholar 

  5. W E Sinclair and D W Pratt J. Chem. Phys. 105 7942 (1996)

    Article  ADS  Google Scholar 

  6. X Song, M Yang, E R Davidson and J P Reilly J. Chem. Phys. 99 2334 (1993)

    Google Scholar 

  7. H Piest, G V Helden and G Meijer J. Chem. Phys. 110 2010 (1999)

    Article  ADS  Google Scholar 

  8. K Sugawara, J Miyawaki, T Nakanaga, H Takeo, G Lembach, S Djafari, H-D Barth and B Brutschy J. Phys. Chem. 100 17145 (1996)

    Article  Google Scholar 

  9. M R Nimlos, M A Young, E R Bernstein and D F Kelly J. Chem. Phys. 91 5268 (1989)

    Article  ADS  Google Scholar 

  10. T Nakanaga and F Ito J. Phys. Chem. A 103 5440 (1999)

    Article  Google Scholar 

  11. Y Hu and E R Bernstein J. Phys. Chem. A. 113 639 (2009)

    Article  Google Scholar 

  12. R A Kydd and P J Krueger J. Chem. Phys. 69 827 (1978)

    Article  ADS  Google Scholar 

  13. S Yan and L H Spangler J. Chem. Phys. 96 4106 (1992)

    Article  ADS  Google Scholar 

  14. M Becucci. E Castellucci, I Lόpez-Tocόn, G Pietraperzia, P R Salvi and W Caminati J. Phys. Chem. A 103 8946 (1999)

    Article  Google Scholar 

  15. M Honda, A Fuji, E Fujimaki, T Ebata and N Mikami J. Phys. Chem. A 107 3678 (2003)

    Article  Google Scholar 

  16. C Gee, S Douin, C Crepin and P Brechignac Chem. Phys. Lett. 338 130 (2001)

    Article  ADS  Google Scholar 

  17. P M Wojciechowski, W Zierkiewicz, D Michalska and P Hobza J. Chem. Phys. 118 10900 (2003) and references therein

  18. M Quack and M Stockburger J. Mol. Spectrosc. 43 87 (1972)

    Article  ADS  Google Scholar 

  19. J C Evans Spectrochim. Acta 16 428 (1960)

    Article  ADS  Google Scholar 

  20. Y Yamada, J-i Okano and N Mikami J. Chem. Phys. 123 124316 (2005)

    Article  ADS  Google Scholar 

  21. B Fehrensen, D Luckhaus and M Quack Zeits. Phys. Chem. 209 1 (1999)

    Article  Google Scholar 

  22. C M Western PGOPHER, A Program for Simulating Rotational Structure(University of Bristol), http://pgopher.chm.bris.ac.uk (2007)

  23. M J Frisch, G W Trucks, H B Schlegel et al GAUSSIAN 03, Revision B.05 (Pittsburgh, PA: Gaussian Inc.) (2003)

  24. G C Pimentel, M O Bulanin and M V Thiel J. Chem. Phys. 36 500 (1962)

    Article  ADS  Google Scholar 

  25. G Herzberg Molecular Spectra and Molecular Structure, Part II, Infrared and Raman Spectra of Polyatomic Molecules (New York: D. Van Nostrand Company) (1945)

    Google Scholar 

  26. E Catalano and D E Milligan J. Chem. Phys. 30 45 (1959)

    Article  ADS  Google Scholar 

  27. T N Wassermann, D Luckhaus, S Coussan and M A Suhm Phys. Chem. Chem. Phys. 8 2344 (2006)

    Article  Google Scholar 

  28. S Lopes, A V Domanskaya, R Fausto, M Räsänen and L Khriachtchev J. Chem. Phys. 133 144507 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support received from the Council of Scientific and Industrial Research (CSIR), Govt. of India to carryout the research reported here. BB thanks the CSIR for the SRF grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mukherjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukherjee, M., Bandyopadhyay, B., Biswas, P. et al. Amine inversion effects on the IR spectra of aniline in the gas phase and cold inert gas matrixes. Indian J Phys 86, 201–208 (2012). https://doi.org/10.1007/s12648-012-0037-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-012-0037-y

Keywords

PACS Nos.

Navigation