Skip to main content
Log in

Vibrational Spectrum of ‘3-iodo-2-propynenitrile (IC3N)’ from accurate CCSD(T)-F12b/MP2-F12 potential energy surface

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The high-resolution infrared spectrum of IC3N has been the subject of numerous experimental studies. Relying on a hybrid anharmonic potential CCSD(T) -F12b/ MP2-F12 with cc-pVTZ-F12b basis sets and the application of a pure variational method (VCI), the IR spectrum of IC3N was calculated between 100 and 4600 cm−1. These calculations allowed us to revisit the entire IR spectrum and assign a large part of its overtones, combinations bands with respect to experimental measurements. As it is shown in this work, the observed bands located at 1031 and 955 cm−1 could be explained in terms of Fermi resonance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Cyvin SJ, Kloster-Jensen E, Klaeboe P (1965) Infra-red spectra and tentative vibrational assignments of some halogeno-cyanoacetylene. Acta Chem Scand 19(4):903

    Article  CAS  Google Scholar 

  2. Klaboe P, Kloster-Jensen E (1967) Raman spectra and revised assignments of some halogeno-cyanoacetylene. Spectrochim Acta 23A:1981

    Article  Google Scholar 

  3. Klaboe P, Kloster-Jensen E (1967) Infra-red spectravibrational assignments and force constants of some mono halogeno diacetylenes including force constants of some halogeno-cyanoacetylenes. Spectrochim Acta 23A(11):2733

    Article  Google Scholar 

  4. Christensen DH, Johnsen I, Klaboe P, Kloster-Jensen E (1969) Far infrared spectra and thermodynamic functions of some halogeno cyanoacetylenes and monohalogeno diacetylene. Spectrochim Acta 25A:1569–1576

    Article  Google Scholar 

  5. Shimanouchi T (2019) NIST Office of Data and Informatics. NIST Chemistry WebBook, Bethesda

    Google Scholar 

  6. Nolin C, Weber J, Savoie R (1976) Vibrational Spectra of crystalline HCCCN, DCCCN, ClCCCN, BrCCCN, and ICCCN. J Raman Spectrosc 5(1):21–33

    Article  CAS  Google Scholar 

  7. Guzik A, Gronowski M, Turowski M, Guillemin JC, Kolos R (2020) Photoisomerisation of IC3N- an experimental and theoretical study. J Photochem Photobiol A 395:112470

    Article  CAS  Google Scholar 

  8. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  9. Pouchan C (2019) Quantum molecular dynamic approach to modeling the vibrational spectra of propynenitrile and its 1:1 complexes with water. Comput Theor Chem 1162:112499

    Article  CAS  Google Scholar 

  10. Adler TB, Knizia G, Werner HJ (2007) Simplified CCSD(T)-F12 methods- theory and benchmarks. J Chem Phys 127:221106

    Article  PubMed  Google Scholar 

  11. Kendall RA, Dunning TH, Harrison RJ (1992) Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J Chem Phys 96:6796

    Article  CAS  Google Scholar 

  12. Dargelos A, Pouchan C (2020) CCSD(T)-F-12 calculations of the IR spectrum of cyanoacetylene HC3N beyond the harmonic approximation. Chem Phys Lett 754:137746

    Article  CAS  Google Scholar 

  13. Bizzochi L, Tamassi F, Laas J, Guiliano BM, Degli Esposti C, Dore L, Melosso M, Canè E, Pietropolli Charmrt A, Muller Holger SP, Spahn Holger, Belloche A, Caselli P, Menten KM, Garrod RT (2017) Rotational and high-resolution infrared spectrum of HC3N: global ro-vibrational analysis and improved line catalog for astrophysical observations. Astrophys Suppl Ser 233:11

    Article  Google Scholar 

  14. Sylvetsky N, Kesharwani MK, Martin JML (2017) The aug-cc-pVnZ-F12 basis set family: correlation consistent basis sets for explicitly correlated benchmark calculations on anions and noncovalent complexes. J Chem Phys 147:134106

    Article  PubMed  Google Scholar 

  15. Peterson KA, Adler TB, Werner H-J (2008) J Chem Phys 128:084102

    Article  PubMed  Google Scholar 

  16. Rauhut G (2004) Efficient calculation of potential energy surfaces for the generation of vibrational wave functions. J Chem Phys 121:9313–9322

    Article  CAS  PubMed  Google Scholar 

  17. Hrenar T, Werner HJ, Rauhut G (2007) Accurate calculation of anharmonic vibrational frequencies of medium sized molecules using local coupled cluster methods. J Chem Phys 126:134108

    Article  PubMed  Google Scholar 

  18. Rauhut G, Hrenar T (2008) A combined variational and perturbational study on the vibrational spectrum of P2F4. Chem Phys 346:160–166

    Article  CAS  Google Scholar 

  19. Werner HJ, Adler TB (2007) General orbital invariant MP2-F12 theory. J Chem Phys 126:164102

    Article  PubMed  Google Scholar 

  20. Richter F, Carbonnière P, Pouchan C (2014) Toward linear scaling: Locality of potential energy surface coupling in valence coordinates. Int J Quantum Chem 114:1401–1411

    Article  CAS  Google Scholar 

  21. Richter F, Carbonnière P, Dargelos A, Pouchan C (2012) An adaptive potential energy surface generation method using curvilinear valence coordinates. J Chem Phys 136:224105

    Article  CAS  PubMed  Google Scholar 

  22. Carter S, Culik SJ, Bowman JM (1997) Vibrational Self-Consistent Field Method for many-mode systems: a new approach and application to the vibration of CO adsorbeb on Cu (100). J Chem Phys 107:10458–10469

    Article  CAS  Google Scholar 

  23. Carter S, Bowman JM, Harding LB (1997) Ab-initio calculation of force fields for H2CN and ClHCN and vibrational energies of H2CN. Spectrochim Acta A 53:1179–1188

    Article  Google Scholar 

  24. Peterson KA, Shepler BC, Figgen D, Stoll H (2006) On the spectroscopic and thermochemical properties of ClO, BrO, IO, and their anions. J Phys Chem A 110(51):13877–13883

    Article  CAS  PubMed  Google Scholar 

  25. Peterson KA, Figgen D, El G, Stoll H, Dolg M (2003) Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16–18 elements. J Chem Phys 119(21):11113–11123

    Article  CAS  Google Scholar 

  26. Frisch MJ, TrucksGW, SchlegelHB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16, Revision C.01; Gaussian, Inc., Wallingford CT

  27. Bloino J, Biczysko M, Barone V (2012) General perturbative approach for spectroscopy, thermodynamics, and kinetics: methodological background and benchmarks studies. J Chem Theory Comput 8:1015–1036 ((and references therein))

    Article  CAS  PubMed  Google Scholar 

  28. Werner HJ, Knowles PJ, Knizia G, Manby FR, Schütz M, Celani P, Györffy W, Kats D, Korona T, Lindh R, Mitrushenkov A, Rauhut G, Shamasundar KR, Adler TB, Amos RD, Bennie SJ, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Goll E, Hampel C, Hesselmann A, Hetzer G, Hrenar T, Jansen G, Köppl C, Lee SJR, Liu Y, Lloyd AW, Ma QR, Mata A, May AJ, McNicholas SJ, Meyer W,{Miller III} TF, Mura ME, Nicklaß A, O'Neill DP, Palmieri P, Peng D, Pflüger K, Pitzer R, Reiher M, Shiozaki T, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, Wang M, Welborn M (2020) MOLPRO: version 2018.1 a package of ab-initio programs. J Chem Phys 152:144107. https://doi.org/10.1063/5.0005081

  29. Carbonniere P, Dargelos A, Pouchan C (2012) VCI-P code inter deposit digital number FR.001.090003.000.S.P.2012.000.31235, Interdeposit Certification 27/02/2012

  30. Dargelos A, Karamanis P, Pouchan C (2018) Theoretical investigation of the infrared spectrum of 5-bromo2-4 pentadynenitrile from a CCSD(T) /B3LYP anharmonic potential. Chem Phys Chem 19:822–826

    Article  CAS  PubMed  Google Scholar 

  31. Dargelos A, Pouchan C (2016) Ab initio modeling of the IR spectra of dicyanoacetylene in the region 100–4800 cm-1. J Phys Chem A 120:6270–6273

    Article  CAS  PubMed  Google Scholar 

  32. Dargelos A, Karamanis P, Pouchan C (2019) Ab-initio calculations of the IR spectra of dicyanodiacetylene (C6N2) beyond the harmonic approximation. Chem Phys Lett 723:155–159

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Pouchan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 152 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pouchan, C., Dargelos, A. & Karamanis, P. Vibrational Spectrum of ‘3-iodo-2-propynenitrile (IC3N)’ from accurate CCSD(T)-F12b/MP2-F12 potential energy surface. Theor Chem Acc 141, 64 (2022). https://doi.org/10.1007/s00214-022-02923-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-022-02923-4

Keyword

Navigation