Skip to main content
Log in

3,4-Methylenedioxymethamphetamine Induces Gene Expression Changes in Rats Related to Serotonergic and Dopaminergic Systems, But Not to Neurotoxicity

  • Short Report/Rapid Communication
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

3,4-Methylenedioxymethamphetamine (MDMA, ecstasy) is an amphetamine derivative widely abused by young adults. Although many studies have reported that relatively high doses of MDMA deplete serotonin (5-HT) content and decrease the availability of serotonin transporters (5-HTT), limited evidence is available as to the adaptive mechanisms taking place in gene expression levels in the brain following a dosing regimen of MDMA comparable to human consumption. In order to further clarify this issue, we used quantitative PCR to study the long-term changes induced by acute administration of MDMA (5 mg/kg × 3) in the expression of genes related to serotonergic and dopaminergic systems, as well as those related to cellular toxicity in the cortex, hippocampus, striatum, and brain stem of rats. Seven days after MDMA administration, we found a significantly lower expression of the 5-HTT (Slc6a4) and the vesicular monoamine transporter (Slc18a2) genes in the brain stem area. In the hippocampus, monoamine oxidase B (Maob) and tryptophan hydroxylase 2 (Tph2) gene expressions were increased. In the striatum, tyrosine hydroxylase (Th) expression was decreased, and a lower expression of α-synuclein (Snca) was observed in the cortex. In contrast, no significant changes were observed in the genes considered to be biomarkers of toxicity including the glial fibrillary acidic protein (Gfap) and the heat-shock 70 kD protein 1A (Hspa1a) in any of the structures assayed. These results suggest that MDMA promotes adaptive changes in genes related to serotonergic and dopaminergic functionality, but not in genes related to neurotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Able JA, Gudelsky GA, Vorhees CV, Williams MT (2006) 3,4-Methylenedioxymethamphetamine in adult rats produces deficits in path integration and spatial reference memory. Biol Psychiatry 59(12):1219–1226

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Adori C, Andó RD, Kovács GG, Bagdy G (2006) Damage of serotonergic axons and immunolocalization of Hsp27, Hsp72, and Hsp90 molecular chaperones after a single dose of MDMA administration in Dark Agouti rat: temporal, spatial, and cellular patterns. J Comp Neurol 497(2):251–269

    Article  CAS  PubMed  Google Scholar 

  • Aguirre N, Barrionuevo M, Ramírez MJ, Del Río J, Lasheras B (1999) Alpha-lipoic acid prevents 3,4-methylenedioxy-methamphetamine (MDMA)-induced neurotoxicity. Neuroreport 10(17):3675–3680

    Article  CAS  PubMed  Google Scholar 

  • Alves E, Summavielle T, Alves CJ, Gomes-da-Silva J, Barata JC, Fernandes E, Bastos ML, Tavares MA, Carvalho F (2007) Monoamine oxidase-B mediates ecstasy-induced neurotoxic effects to adolescent rat brain mitochondria. J Neurosci 27(38):10203–10210

    Article  CAS  PubMed  Google Scholar 

  • Alves E, Binienda Z, Carvalho F, Alves CJ, Fernandes E, de Lourdes BM, Tavares MA, Summavielle T (2009) Acetyl-l-carnitine provides effective in vivo neuroprotection over 3,4-methylenedioximethamphetamine-induced mitochondrial neurotoxicity in the adolescent rat brain. Neuroscience 158(2):514–523

    Article  CAS  PubMed  Google Scholar 

  • Baumann MH, Wang X, Rothman RB (2007) 3,4-Methylenedioxymethamphetamine (MDMA) neurotoxicity in rats: a reappraisal of past and present findings. Psychopharmacology 189(4):407–424

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Biezonski DK, Meyer JS (2010) Effects of 3,4-methylenedioxymethamphetamine (MDMA) on serotonin transporter and vesicular monoamine transporter 2 protein and gene expression in rats: implications for MDMA neurotoxicity. J Neurochem 112(4):951–962

    Article  CAS  PubMed  Google Scholar 

  • Biezonski DK, Meyer JS (2011) The nature of 3,4-methylenedioxymethamphetamine (MDMA)-induced serotonergic dysfunction: evidence for and against the neurodegeneration hypothesis. Curr Neuropharmacol 9(1):84–90

    Article  CAS  PubMed  Google Scholar 

  • Bonkale WL, Austin MC (2008) 3,4-Methylenedioxymethamphetamine induces differential regulation of tryptophan hydroxylase 2 protein and mRNA levels in the rat dorsal raphe nucleus. Neuroscience 155(1):270–276

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bonvento G, Lacombe P, MacKenzie ET, Fage D, Benavides J, Rouquier L, Scatton B (1991) Evidence for differing origins of the serotonergic innervations of major cerebral arteries and small pial vessels in the rat. J Neurochem 56(2):681–689

    Article  CAS  PubMed  Google Scholar 

  • Breier JM, Bankson MG, Yamamoto BK (2006) l-Tyrosine contributes to (+)-3,4-methylenedioxymethamphetamine-induced serotonin depletions. J Neurosci 26(1):290–299

    Article  CAS  PubMed  Google Scholar 

  • Capela JP, Carmo H, Remiao F, Bastos ML, Meisel A, Carvalho F (2009) Molecular and cellular mechanisms of ecstasy-induced neurotoxicity: an overview. Mol Neurobiol 39(3):210–271

    Article  CAS  PubMed  Google Scholar 

  • Colado MI, O’Shea E, Green AR (2004) Acute and long-term effects of MDMA on cerebral dopamine biochemistry and function. Psychopharmacology 173(3–4):249–263

    Article  CAS  PubMed  Google Scholar 

  • Commins DL, Vosmer G, Virus RM, Woolverton WL, Schuster CR, Seiden LS (1987) Biochemical and histological evidence that methylenedioxymethylamphetamine (MDMA) is toxic to neurons in the rat brain. J Pharmacol Exp Ther 241(1):338–345

    CAS  PubMed  Google Scholar 

  • Cuyàs E, Verdejo-García A, Fagundo AB, Khymenets O, Rodríguez J, Cuenca A, de Sola Llopis S, Langohr K, Peña-Casanova J, Torrens M, Martín-Santos R, Farré M, de la Torre R (2011) The influence of genetic and environmental factors among MDMA users in cognitive performance. PLoS ONE 6(11):e27206

    Article  PubMed Central  PubMed  Google Scholar 

  • de Sola Llopis S, Miguelez-Pan M, Peña-Casanova J, Poudevida S, Farré M, Pacifici R, Böhm P, Abanades S, VerdejoGarcía A, Langohr K, Zuccaro P, de la Torre R (2008) Cognitive performance in recreational ecstasy polydrug users: a two-year follow-up study. J Psychopharmacol 22(5):498–510

    Article  PubMed  Google Scholar 

  • Di Iorio CR, Watkins TJ, Dietrich MS, Cao A, Blackford JU, Rogers B, Ansari MS, Baldwin RM, Li R, Kessler RM, Salomon RM, Benningfield M, Cowan RL (2012) Evidence for chronically altered serotonin function in the cerebral cortex of female 3,4-methylenedioxymethamphetamine polydrug users. Arch Gen Psychiatry 69:399–409

    Article  PubMed Central  PubMed  Google Scholar 

  • Fitzgerald JL, Reid JJ (1990) Effects of methylenedioxymethamphetamine on the release of monoamines from rat brain slices. Eur J Pharmacol 191(2):217–220

    Article  CAS  PubMed  Google Scholar 

  • Fornai F, Lenzi P, Ferrucci M, Lazzeri G, di Poggio AB, Natale G, Busceti CL, Biagioni F, Giusiani M, Ruggieri S, Paparelli A (2005) Occurrence of neuronal inclusions combined with increased nigral expression of alpha-synuclein within dopaminergic neurons following treatment with amphetamine derivatives in mice. Brain Res Bull 65(5):405–413

    Article  CAS  PubMed  Google Scholar 

  • Goni-Allo B, Mathuna O, Segura M, Puerta E, Lasheras B, de la Torre R, Aguirre N (2008) The relationship between core body temperature and 3,4-methylenedioxymethamphetamine metabolism in rats: implications for neurotoxicity. Psychopharmacology 197(2):263–278

    Article  CAS  PubMed  Google Scholar 

  • Green AR, Mechan AO, Elliott JM, O’Shea E, Colado MI (2003) The pharmacology and clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”). Pharmacol Rev 55(3):463–508

    Article  CAS  PubMed  Google Scholar 

  • Hrometz SL, Brown AW, Nichols DE, Sprague JE (2004) 3,4-Methylenedioxymethamphetamine (MDMA, ecstasy)-mediated production of hydrogen peroxide in an in vitro model: the role of dopamine, the serotonin reuptake transporter, and monoamine oxidase-B. Neurosci Lett 367(1):56–59

    Article  CAS  PubMed  Google Scholar 

  • Johnson MP, Hoffman AJ, Nichols DE (1986) Effects of the enantiomers ofMDA, MDMA and related analogues on [3H]serotonin and [3H]dopamine release from superfused rat brain slices. Eur J Pharmacol 132(2–3):269–276

    Article  CAS  PubMed  Google Scholar 

  • Jones DC, Lau SS, Monks TJ (2004) Thioether metabolites of 3,4-methylenedioxyamphetamine and 3,4-methylenedioxymethamphetamine inhibit human serotonin transporter (hSERT) function and simultaneously stimulate dopamine uptake into hSERT-expressing SK-N-MC cells. J Pharmacol Exp Ther 311(1):298–306

    Article  CAS  PubMed  Google Scholar 

  • Kindlundh-Hogberg AM, Svenningsson P, Schiöth HB (2006) Quantitative mapping shows that serotonin rather than dopamine receptor mRNA expressions are affected after repeated intermittent administration of MDMA in rat brain. Neuropharmacology 51(4):838–847

    Article  PubMed  Google Scholar 

  • Kirilly E, Molnar E, Balogh B, Kantor S, Hansson SR, Palkovits M, Bagdy G (2008) Decrease in REM latency and changes in sleep quality parallel serotonergic damage and recovery after MDMA: a longitudinal study over 180 days. Int J Neuropsychopharmacol 11(6):795–809

    Article  CAS  PubMed  Google Scholar 

  • Kish SJ, Furukawa Y, Ang L, Vorce SP, Kalasinsky KS (2000) Striatal serotonin is depleted in brain of a human MDMA (Ecstasy) user. Neurology 55(2):294–296

    Article  CAS  PubMed  Google Scholar 

  • Kovacs GG, Ando RD, Adori C, Kirilly E, Benedek A, Palkovits M, Bagdy G (2007) Single dose of MDMA causes extensive decrement of serotoninergic fibre density without blockage of the fast axonal transport in Dark Agouti rat brain and spinal cord. Neuropathol Appl Neurobiol 33(2):193–203

    Article  CAS  PubMed  Google Scholar 

  • Li IH, Huang WS, Shiue CY, Huang YY, Liu RS, Chyueh SC, Hu SH, Shen LH, Liao MH, Liu JC, Ma KH (2010) Study on the neuroprotective effect of fluoxetine against MDMA-induced neurotoxicity on the serotonin transporter in rat brain using micro-PET. Neuroimage 49(2):1259–1270

    Article  PubMed  Google Scholar 

  • Lindvall O, Björklund A, Moore RY, Stenevi U (1974) Mesencephalic dopamine neurons projecting to neocortex. Brain Res 81(2):325–331

    Article  CAS  PubMed  Google Scholar 

  • Martín-Santos R, Torrens M, Poudevida S, Langohr K, Cuyàs E, Pacifici R, Farre M, Pichini S, de la Torre R (2010) 5-HTTLPR polymorphism, mood disorders and MDMA use in a 3-year follow-up study. Addict Biol 15(1):15–22

    Article  PubMed  Google Scholar 

  • Mayerhofer A, Kovar KA, Schmidt WJ (2001) Changes in serotonin, dopamine and noradrenaline levels in striatum and nucleus accumbens after repeated administration of the abused drug MDMA in rats. Neurosci Lett 308(2):99–102

    Article  CAS  PubMed  Google Scholar 

  • McGregor IS, Gurtman CG, Morley KC, Clemens KJ, Blokland A, Li KM, Cornish JL, Hunt GE (2003) Increased anxiety and “depressive” symptoms months after MDMA (“ecstasy”) in rats: drug-induced hyperthermia does not predict long-term outcomes. Psychopharmacology 168(4):465–474

    Article  CAS  PubMed  Google Scholar 

  • Mladenovic A, Perovic M, Tanic N, Petanceska S, Ruzdijic S, Kanazir S (2007) Dietary restriction modulates alpha-synuclein expression in the aging rat cortex and hippocampus. Synapse 61(9):790–794

    Article  CAS  PubMed  Google Scholar 

  • Monks TJ, Jones DC, Bai F, Lau SS (2004) The role of metabolism in 3,4-(+)-methylenedioxyamphetamine and 3,4-(+)-methylenedioxymethamphetamine (ecstasy) toxicity. Ther Drug Monit 26(2):132–136

    Article  CAS  PubMed  Google Scholar 

  • Nichols DE, Lloyd DH, Hoffman AJ, Nichols MB, Yim GK (1982) Effects of certain hallucinogenic amphetamine analogues on the release of [3H]serotonin from rat brain synaptosomes. J Med Chem 25(3):530–535

    Article  CAS  PubMed  Google Scholar 

  • O’Callaghan JP, Miller DB (1993) The interactions of MK-801 with the amphetamine analogues d-methamphetamine (d-METH), 3,4-methylenedioxymethamphetamine (ds-MDMA) or d-fenfluramine (d-FEN): neural damage and neural protection. Ann N Y Acad Sci 679:321–324

    Article  PubMed  Google Scholar 

  • O’Loinsigh ED, Boland G, Kelly JP, O’Boyle KM (2001) Behavioural, hyperthermic and neurotoxic effects of 3,4-methylenedioxymethamphetamine analogues in the Wistar rat. Prog Neuropsychopharmacol Biol Psychiatry 25(3):621–638

    Article  PubMed  Google Scholar 

  • Pubill D, Canudas AM, Pallàs M, Camins A, Camarasa J, Escubedo E (2003) Different glial response to methamphetamine- and methylenedioxymethamphetamine-induced neurotoxicity. Naunyn Schmiedebergs Arch Pharmacol 367(5):490–499

    Article  CAS  PubMed  Google Scholar 

  • Puerta E, Aguirre N (2011) Methylenedioxymethamphetamine (MDMA, ‘Ecstasy’): neurodegeneration versus neuromodulation. Pharmaceuticals 4:992–1018

    Article  CAS  Google Scholar 

  • Purves D (2004) Neurotransmitters, receptors, and their effects. In: Purves D (ed) Neuroscience. Sinauer Associates, Sunderland, pp 129–165

    Google Scholar 

  • Reneman L, Endert E, de Bruin K, Lavalaye J, Feenstra MG, de Wolff FA, Booij J (2002) The acute and chronic effects of MDMA (“ecstasy”) on cortical 5-HT2A receptors in rat and human brain. Neuropsychopharmacology 26:387–396

    Article  CAS  PubMed  Google Scholar 

  • Ricaurte GA, Forno LS, Wilson MA, DeLanney LE, Irwin I, Molliver ME, Langston JW (1988) (±)3,4-Methylenedioxymethamphetamine selectively damages central serotonergic neurons in nonhuman primates. JAMA 260(1):51–55

    Article  CAS  PubMed  Google Scholar 

  • Ricaurte GA, Yuan J, McCann UD (2000) (±)3,4-Methylenedioxymethamphetamine (‘Ecstasy’)-induced serotonin neurotoxicity: studies in animals. Neuropsychobiology 42(1):5–10

    Article  CAS  PubMed  Google Scholar 

  • Sanchez V, Camarero J, Esteban B, Peter MJ, Green AR, Colado MI (2001) The mechanisms involved in the long-lasting neuroprotective effect of fluoxetine against MDMA (‘ecstasy’)-induced degeneration of 5-HT nerve endings in rat brain. Br J Pharmacol 134(1):46–57

    Article  CAS  PubMed  Google Scholar 

  • Schmidt CJ, Taylor VL (1987) Depression of rat brain tryptophan hydroxylase activity following the acute administration of methylenedioxymethamphetamine. Biochem Pharmacol 36(23):4095–4102

    Article  CAS  PubMed  Google Scholar 

  • Shankaran M, Yamamoto BK, Gudelsky GA (1999) Mazindol attenuates the 3,4-methylenedioxymethamphetamine-induced formation of hydroxyl radicals and long-term depletion of serotonin in the striatum. J Neurochem 72:2516–2522

    Article  CAS  PubMed  Google Scholar 

  • Sharma HS, Ali SF (2008) Acute administration of 3,4-methylenedioxymethamphetamine induces profound hyperthermia, blood-brain barrier disruption, brain edema formation, and cell injury. Ann N Y Acad Sci 1139:242–258

    Article  CAS  PubMed  Google Scholar 

  • Sprague JE, Everman SL, Nichols DE (1998) An integrated hypothesis for the serotonergic axonal loss induced by 3,4-methylenedioxymethamphetamine. Neurotoxicology 19(3):427–441

    CAS  PubMed  Google Scholar 

  • Stone DM, Johnson M, Hanson GR, Gibb JW (1988) Role of endogenous dopamine in the central serotonergic deficits induced by 3,4-methylenedioxymethamphetamine. J Pharmacol Exp Ther 247:79–87

    CAS  PubMed  Google Scholar 

  • Stone DM, Johnson M, Hanson GR, Gibb JW (1989) Acute inactivation of tryptophan hydroxylase by amphetamine analogs involves the oxidation of sulfhydryl sites. Eur J Pharmacol 172(7):93–97

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Baumann MH, Xu H, Rothman RB (2004) 3,4-Methylenedioxymethamphetamine (MDMA) administration to rats decreases brain tissue serotonin but not serotonin transporter protein and glial fibrillary acidic protein. Synapse 53(4):240–248

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Baumann MH, Xu H, Morales M, Rothman RB (2005) (±)-3,4-Methylenedioxymethamphetamine administration to rats does not decrease levels of the serotonin transporter protein or alter its distribution between endosomes and the plasma membrane. J Pharmacol Exp Ther 314(5):1002–1012

    Article  CAS  PubMed  Google Scholar 

  • Wersinger C, Sidhu A (2009) Partial regulation of serotonin transporter function by gamma-synuclein. Neurosci Lett 453(3):157–161

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wersinger C, Rusnak M, Sidhu A (2006) Modulation of the trafficking of the human serotonin transporter by human alpha-synuclein. Eur J Neurosci 24(1):55–64

    Article  PubMed  Google Scholar 

  • Wotherspoon G, Savery D, Priestley JV, Rattray M (1994) Repeated administration of MDMA down-regulates preprocholecystokinin mRNA expression but not tyrosine hydroxylase mRNA expression in neurones of the rat substantia nigra. Brain Res Mol Brain Res 25(1–2):34–40

    Article  CAS  PubMed  Google Scholar 

  • Xie T, Tong L, McLane MW, Hatzidimitriou G, Yuan J, McCann U, Ricaurte G (2006) Loss of serotonin transporter protein after MDMA and other ring-substituted amphetamines. Neuropsychopharmacology 31(12):2639–2651 Erratum in: Neuropsychopharmacology. 2008 Feb;33(3):712–713

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from DIUE de la Generalitat de Catalunya (2009 SGR 718) and ISCIII-Red de Trastornos Adictivos (RTA: RD12/0028/0009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael de la Torre.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuyas, E., Robledo, P., Pizarro, N. et al. 3,4-Methylenedioxymethamphetamine Induces Gene Expression Changes in Rats Related to Serotonergic and Dopaminergic Systems, But Not to Neurotoxicity. Neurotox Res 25, 161–169 (2014). https://doi.org/10.1007/s12640-013-9416-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-013-9416-1

Keywords

Navigation