Skip to main content
Log in

UV-Absorption and Silica/Titania Colloids Using a Core–Shell Approach

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

An Erratum to this article was published on 01 April 2010

Abstract

Metal-oxo-colloids have been prepared using tetraethoxysilane (TEOS) oligomers with titanium tetra-i-propoxide (TIP) or titanium (di-i-propoxide) bis(acetylacetonate) (TIA) precursors. Transmission electron microscopy (TEM), FTIR, UV-Vis, and photoluminescence spectroscopy were used to investigate the composition, the size, and optical properties of the Si/Ti core–shell colloids. The presence of hetero-bonded silicate structure (Si–O–Ti) was indicated by FTIR spectroscopy. The size of Si/TIP system ranged from 55 to 120 nm and Si/TIA system ranged from 220 to 250 nm. The TEM data indicated that the size of colloids can be controlled by the TIP or TIA content. The Si/Ti system exhibited strong absorption in the UV-range, yet had excellent optical transmittance in the visible range. The Si/Ti systems exhibited a photoluminescence emission at 329 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ni H, Skaja AD, Sailer RA, Soucek MD (2000) Macromol Chem Phys 201:722

    Article  CAS  Google Scholar 

  2. Soucek MD, Ni H (2002) J Coat Technol 74:125

    Article  CAS  Google Scholar 

  3. He J, Nebioglu A, Zong Z, Soucek MD, Wollyung KM, Wesdemiotis C (2005) Macromol Chem Phys 205:732

    Article  Google Scholar 

  4. Deffar D, Teng G, Soucek MD (2001) Macromol Mater Eng 286:204

    Article  CAS  Google Scholar 

  5. Xiong MH, Zhou SX, You B, Gu GG, Wu LM (2004) J Polym Sci Part B Polym Phys 42:3682

    Article  CAS  Google Scholar 

  6. Teng G, Soucek MD (2003) Macromol Mater Eng 288:844

    Article  CAS  Google Scholar 

  7. Holmes Farley SD, Yanyo LC (1991) J Adhes Sci Technol 5:131

    Article  CAS  Google Scholar 

  8. Frings S, Meinema HA, Van Nostrum CF, Vander-Linde R (1998) Prog Org Coat 33:126

    Article  CAS  Google Scholar 

  9. Messadeq SH, Pulcinelli SH, Santilli CV, Guastaldi AC, Messadeq Y (1999) J Non-Cryst Solids 247:164

    Article  Google Scholar 

  10. Liu Y, Ren W, Zhang L, Yao X (1999) Thin Solid Films 353:124

    Article  CAS  Google Scholar 

  11. Zong Z, Soucek MD (2003) J Polym Sci: Part A: Polym Chem 41:3440

    Article  CAS  Google Scholar 

  12. Chen J, Soucek MD (2003) Euro Polym J 39:505

    Article  CAS  Google Scholar 

  13. Sailer RA, Soucek MD (1998) Prog Org Coat 33:36

    Article  CAS  Google Scholar 

  14. Deffar D, Soucek MD (2001) J Coat Technol 73:95

    Article  CAS  Google Scholar 

  15. Ni H, Johnson AH, Soucek MD, Grant JT, Vreugdenhil AJ (2002) Macromol Mater Eng 287:470

    Article  CAS  Google Scholar 

  16. Matsuda A, Kotani Y, Kogure T, Tatsumisago M, Minami T (2000) J Am Ceram Soc 83:229

    Article  CAS  Google Scholar 

  17. Kim HM, Miyaji F, Kokubo T, Nakamura T (1996) J Biomed Mater Res 32:406

    Google Scholar 

  18. Cassgneau T, Fendler JH, Johnson S, Mallouk TE (2000) Adv Mat 12:1363

    Article  Google Scholar 

  19. Lin J, Siddiqui JA, Ottenbrite RM (2001) Polym Adv Technol 12:285

    Article  CAS  Google Scholar 

  20. Gebeyehu D, Brabec CJ, Sariciftci NS, Vangeneugden D, Kiebooms R, Vanderzande D, Kienberger F, Schindler H (2002) Synth Met 125:279

    Article  CAS  Google Scholar 

  21. Spiekermann S, Smestad G, Kowalik J, Tolbert LM, Gratzel M (2001) Synth Met 121:1603

    Article  CAS  Google Scholar 

  22. Farrar RR, Shapiro M, Javaid I (2003) Biocontrol 48:1386

    Google Scholar 

  23. Soucek MD, Johnson AJ (2005) Polym Adv Technol 16:257

    Article  CAS  Google Scholar 

  24. Price LP (1995) J Coat Technol 67:27

    CAS  Google Scholar 

  25. Decker C, Biry S, Zahouily K (1995) Polym Degrad Stab 49:111

    Article  CAS  Google Scholar 

  26. Li Q, Dong P (2003) J Colloid Interface Sci 261:325

    Article  CAS  Google Scholar 

  27. Guo XC, Dong P (1999) Langmuir 15:5535

    Article  CAS  Google Scholar 

  28. Hanprasopwattana A, Srinivasan S, Sault AG, Datye AK (1996) Langmuir 12:3173

    Article  CAS  Google Scholar 

  29. Fu X, Qutubuddin S (2001) Colloids Surf A Physicoche Eng Asp 178:151

    Article  CAS  Google Scholar 

  30. Kim KD, Bae HJ, Kim HT (2003) Colloids Surf A Physicoche Eng Asp 224:119

    Article  CAS  Google Scholar 

  31. Cheng P, Zheng M, Jin Y, Huang Q, Gu M (2003) Mater Lett 57:2989

    Article  CAS  Google Scholar 

  32. Castillo R, Koch B, Ruiz P, Deimon B (1994) J Mater Chem 4:903

    Article  CAS  Google Scholar 

  33. Hsu WP, Yu R, Matijevic E (1993) J Colloid Interface Sci 156:56

    Article  CAS  Google Scholar 

  34. Lin CC, Basil JD (1986) In better ceramics through chemistry III. In: Materials research society, materials research society, Pittsburgh, PA, pp 15–25

  35. Zong Z, Soucek MD, Xue CC (2005) J Polym Sci: Part A: Polym Chem 43:1607

    Article  CAS  Google Scholar 

  36. Wohrle D (2001) Macromol Rapid Commun 22:68

    Article  CAS  Google Scholar 

  37. Miller JB, Johnston S, Ko E (1994) J Catal 150:311

    Article  CAS  Google Scholar 

  38. We have employed Hyperchem 7.5, Hypercube Inc., as well as the VAMP Module in Materials Studio 4.0, Accelrys, Inc

  39. Williams Q (1995) In: Ahrens TJ (ed) Mineral physics and crystallography. American Geophysical Union, Washington, pp 291–297

    Google Scholar 

  40. Odian G (1991) Principles of polymerization, 3rd edn. Wiley, New York

    Google Scholar 

  41. Lee J, Kong S, Kim W, Kim J (2007) Mater Chem Phys 106:39

    Article  CAS  Google Scholar 

  42. Mabakazu A, Kawamura T, Kodama S (1998) J Phys Chem 92:438

    Google Scholar 

  43. Vogel R, Hoyer P, Weller H (1994) J Phys Chem 98:3183

    Article  CAS  Google Scholar 

  44. Minero C, Catozzo Pelizzetti FE (1992) Langmuir 8:481

    Article  CAS  Google Scholar 

  45. Kornman C, Bahnemann D, Hoffmann M (1991) Environ Sci Technol 25:494

    Article  Google Scholar 

  46. Lim SH, Phonthammachai N, Pramana SS, White TJ (2008) Langmuir 24:6226

    Article  CAS  Google Scholar 

  47. Zhang Y, Boisjolly G, Rivory J, Kilian L, Colliex C (1994) Thin Solid Films 253:299

    Article  Google Scholar 

  48. Song Y, Sakurai T, Kishimoto K, Maruta K, Matsumoto S, Kikuchi K (1998) Vacuum 51:525

    Article  CAS  Google Scholar 

  49. Miyamoto Y, Kirihara S, Kanehira S (2004) J Appl Ceram Technol 1:61

    Google Scholar 

  50. Schultz PC (1976) J Am Ceram Soc 59:214

    Article  CAS  Google Scholar 

  51. Becker MR, Cavender R, Elder ML, Jones PC, Murphy JA (1991) US Pat 5067975

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark D. Soucek.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s12633-010-9048-5

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, L., Heinz, H., Soucek, M.D. et al. UV-Absorption and Silica/Titania Colloids Using a Core–Shell Approach. Silicon 2, 95–104 (2010). https://doi.org/10.1007/s12633-009-9030-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-009-9030-2

Keywords

Navigation