Skip to main content
Log in

CW-Laser-Induced Solid-State Reactions in Mixed Micron-Sized Particles of Silicon Monoxide and Titanium Monoxide: Nano-Structured Composite with Visible Light Absorption

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Silica–titania mixed oxides and composites have been broadly examined for their physical and catalytic properties, but titanium monoxide–silicon monoxide counterparts have yet drawn very little attention. Here we report that laser-induced processing of mixed silicon and titanium monoxides results in reactions yielding a nanostructured Ti/Si/O composite absorbing visible light. Changes in the composition of intimately mixed μm-sized particles of silicon monoxide (SiO) and titanium monoxide (TiO) induced by scanning of a cw CO2 laser beam along the TiO–SiO pellet surface were examined by FTIR and Raman spectroscopy, X-ray diffraction and electron microscopy. They are shown to consist in the evolution of TiO2 (rutile and anatase), titanium suboxides (Ti4.5O5, Ti2O3), silica and amorphous binary SiOx, TiOx and ternary SixTiyOz nano-phases which contain less or more O than SiO and TiO monoxides. These products are ascribed to concurrent silicothermal reduction of TiO and O-transfer between SiO and TiO due to interdiffusion of Si- and Ti-based species. These reactions taking place under transient localized heating are not inhibited by passivation shells around SiO and TiO particles. The laser-produced Ti/Si/O composite shows absorption band at 425 nm tailing up to 1100 nm. Its solar-light photocatalytic activity in decolorization of Methylene Blue is compared to that of the unheated SiO and TiO powders absorbing only in UV region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A.G. Kalampounias, E. Farsari, E. Amanatides, D. Mataras, G.N. Papatheodorou, Appl. Phys. A 116, 303 (2014)

    Article  CAS  Google Scholar 

  2. A.L. Abed, B.G. Rasheed, Modern Appl. Sci. 4, 56 (2010)

    Article  CAS  Google Scholar 

  3. Y. Takeyama, S. Maruyama, Y. Matsumoto, Sci. Technol. Adv. Mater. 21, 054210 (2011)

    Article  Google Scholar 

  4. P.E. Dyer, A. Issa, P.H. Key, P. Monk, Supercond. Sci. Technol. 3, 472 (1990)

    Article  CAS  Google Scholar 

  5. J. Pola, J. Vítek, Y. Polyakov, L.E. Guselnikov, P.M. Matveychev, S.A. Bashkirova, J. Tláskal, R. Mayer, Appl. Organomet. Chem. 5, 57 (1991)

    Article  CAS  Google Scholar 

  6. J. Pola, D. Tomanová, P. Schneider, V. Dědek, J. Tláskal, J. Fluorine Chem. 50, 309 (1990)

    Article  CAS  Google Scholar 

  7. M. Urbanová, J. Vítek, Z. Bastl, K. Ubik, J. Pola, J. Mater. Chem. 5, 849 (1995)

    Article  Google Scholar 

  8. J. Pola, M. Farkačová, P. Kubát, A. Trka, J. Chem. Soc. Faraday Trans. 1 80, 1499 (1984)

    Article  CAS  Google Scholar 

  9. J. Pola, J. Ludvík, J. Chem. Soc. Perkin 1727 (1987)

  10. D. K. Russell, Chem. Soc. Rev. 19, 407 (1990)

    Article  CAS  Google Scholar 

  11. R. Fajgar, J. Pola, J. Org. Chem. 58, 709 (1993)

    Article  Google Scholar 

  12. K.K. Kuo, J.U. Kim, B.L. Fetherolf, T. Torikai, Combust. Flame 95, 351 (1993)

    Article  CAS  Google Scholar 

  13. C. Popescu, V. Jianu, R. Alexandrescu, I.N. Michailescu, I. Morjan, M.L. Pascu, Thermochim. Acta 129, 269 (1988)

    Article  CAS  Google Scholar 

  14. I. Ursu, L. Nanu, I.N. Mihailescu, L.C. Nistor, V.S. Teodorescu, A.M. Prokhorov, V.I. Konov, N.I. Chapliev, J. Phys. Lett. 45, L737 (1984)

    Article  Google Scholar 

  15. H.L. Enfant, P. Laurens, M.C.S. Catherine, J.J. Blechet, Trans. Eng. Sci. 8, 273 (1995)

    Google Scholar 

  16. H. Iwasaki, N.F.H. Bright, J. Less-Common Met. 21, 353 (1970)

    Article  CAS  Google Scholar 

  17. A.A. Valeeva, G. Tang, A.I. Gusev, A.A. Rempel, Phys. Solid State, (2003), 45, 87

    Article  CAS  Google Scholar 

  18. K. Schulmeister, W. Mader, J. Non-Crystal. Solids 320, 143 (2003)

    Article  CAS  Google Scholar 

  19. A. Hohl, T. Wieder, P.A. van Aken, T.E. Weirich, G. Denninger, M. Vidal, S. Oswald, C. Deneke, J. Mayer, H. Fuess, J. Non-Crystal. Solids 320, 255 (2003)

    Article  CAS  Google Scholar 

  20. V. Jandová, D. Pokorná, J. Kupčík, P. Dytrych, P. Cuřínová, R. Fajgar, J. Pola, J. Photochem. Photobiol. A 332, 376 (2017)

    Article  Google Scholar 

  21. J.L. Labar, Ultramicroscopy 103, 237 (2005)

    Article  CAS  Google Scholar 

  22. JCPDS PDF-4 database, International Centre for Diffraction Data. (Newtown Square, PA, USA, release 2016)

  23. ICSD database. (FIZ Karlsruhe, Germany, release 2016/2, 2016)

  24. W. Zhang, S. Zhang, Y. Liu, T. Chen, J. Cryst. Growth 311, 1296 (2009)

    Article  CAS  Google Scholar 

  25. V. Jandová, Z. Bastl, J. Šubrt, J. Pola, J. Anal. Appl. Pyrolysis 92, 287 (2011)

    Article  Google Scholar 

  26. W. Hertl, W.W. Pultz, J. Am. Ceram. Soc. 50, 378 (1967)

    Article  CAS  Google Scholar 

  27. A.M. Mamiya, H. Takei, M. Kikuchi, C. Uyeda, J. Cryst. Growth 229, 457 (2001)

    Article  CAS  Google Scholar 

  28. P. Kern, Y. Műller, J. Patscheider, J. Michler, J. Phys. Chem. B 110, 23660 (2006)

    Article  CAS  Google Scholar 

  29. N. Tomozeiu, in Materials and Techniques, ed. by P. Predeep (InTech, Rijeka, 2011), p. 63

    Google Scholar 

  30. R.A. Zárate, V.M. Fuenzalida, Vacuum 76, 13 (2004)

    Article  Google Scholar 

  31. T.S. Verkhogiadova, L.A. Dvorina, Zh. Prikl. Khim. 38, 1716 (1965)

    Google Scholar 

  32. C. Hauf, R. Kniep, G. Pfaff, J. Mater. Sci. 34, 1287 (1999)

    Article  CAS  Google Scholar 

  33. B. Xu, H.Y. Sohn, Y. Mohassab, Y. Lan, RSC Adv. 6, 79706 (2016)

    Article  CAS  Google Scholar 

  34. F. Zuo, L. Wang, T. Wu, Z. Zhang, D. Borchardt, P. Feng, J. Am. Chem. Soc. 132, 11856 (2010)

    Article  CAS  Google Scholar 

  35. Y. Wang, Y. Qin, G. Li, Z. Cui, Z. Zhang, J. Cryst. Growth 282, 402 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The results were developed within the CENTEM project, Reg. No.CZ.1.05/2.1.00/03.0088, in the follow-up sustainability stage, supported through CENTEM PLUS (LO1402) by financial means from the Ministry of Education, Youth and Sports of the Czech Republic under the “National Sustainability Programme I”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Pola.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Křenek, T., Tesař, J., Kupčík, J. et al. CW-Laser-Induced Solid-State Reactions in Mixed Micron-Sized Particles of Silicon Monoxide and Titanium Monoxide: Nano-Structured Composite with Visible Light Absorption. J Inorg Organomet Polym 27, 1640–1648 (2017). https://doi.org/10.1007/s10904-017-0624-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-017-0624-7

Keywords

Navigation