Skip to main content
Log in

SOFC composite electrolyte based on LSGM-8282 and zirconia or doped zirconia from zircon concentrate

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The aim of this research is to study zirconia-based electrolyte materials to increase the commercial value of zircon concentrate as a side product of tin mining industries. Synthesis of CaO-Y2O3-ZrO2 (CYZ) and 8mol% Y2O3-ZrO2 (8YSZ) was carried out by solid state reaction. The result shows that ZrO2 presents in tetragonal phase. Doping of Y2O3 into ZrO2 allows a phase transformation from tetragonal into cubic structure with small percentage of monoclinic phase. Meanwhile, doping of CaO-Y2O3 allows a phase transformation into a single cubic phase. These phase transformations enhance the ionic conductivity of the material. Introduction of 10wt% of LSGM-8282 into CYZ (CYZ-L90:10) allows further improvement of inter-grain contact shown by SEM morphological analysis and leads to the enhancement of ionic conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Guo, Property degradation of tetragonal zirconia induced by low-temperature defect reaction with water molecules, Chem. Mater., 16(2004), p.3988.

    Article  CAS  Google Scholar 

  2. T. Mori, J. Drennan, J.H. Lee, J.G. Li, and T. Ikegami, Oxide ionic conductivity and microstructures of Sm- or La-doped CeO2-based systems, Solid State Ionics, 154–155(2002), p.461.

    Article  Google Scholar 

  3. A. Rizea, D. Chirlesan, C. Petot, and G. Petot-Ervas, The influence of alumina on the microstructure and grain boundary conductivity of yttria-doped zirconia, Solid State Ionics, 146(2002), No.3, p.341.

    Article  CAS  Google Scholar 

  4. D.J.L. Brett, A. Atkinson, N.P. Brandon, and S.J. Skinner, Intermediate temperature solid oxide fuel cells, Chem. Soc. Rev., 37(2008), p.1568.

    Article  CAS  Google Scholar 

  5. A. Rizea, G. Petot-Ervas, C. Petot, M. Abrudeanu, M.J. Graham, and G.I. Sproule, Transport properties of yttrium-doped zirconia influence of kinetic demixing, Solid State Ionics, 177(2007), No.39–40, p.3417.

    Article  CAS  Google Scholar 

  6. J.H. Gong, Y. Li, Z.T. Zhang, and Z.L. Tang, ac impedance study of zirconia doped with yttria and calcia, J. Am. Ceram. Soc., 83(2000), p.648.

    Article  CAS  Google Scholar 

  7. J.H. Gong, Y. Li, Z.L. Tang, and Z.T. Zhang, Ionic conductivity in the ternary system (ZrO2)1−0.08x−0.12y -(Y2O3)0.08x -(CaO)0.12y , J. Mater. Sci., 35(2000), p.3547.

    Article  CAS  Google Scholar 

  8. Y. Li, M. Liu, J.H. Gong, Y. Chen, Z.L. Tang, and Z.T. Zhang, Grain-boundary effect in zirconia stabilized with yttria and calcia by electrical measurements, Mater. Sci. Eng. B, 103(2003), p.108.

    Article  Google Scholar 

  9. R. Chaim, Microstructure and bending strength in the ternary (Mg-Ca)-partially-stabilized zirconia, J. Am. Ceram. Soc., 75(1992), p.694.

    Article  CAS  Google Scholar 

  10. H. Kaneko, F.X. Jin, and H. Taimatsu, Electrical conductivity of zirconia stabilized with scandia and yttria, J. Am. Ceram. Soc., 76(1993), No.3, p.793.

    Article  CAS  Google Scholar 

  11. R. Chiba, T. Ishii, and F. Yoshimura, Temperature dependence of ionic conductivity in (1−x)ZrO2-(xy)Sc2O3-y Yb2O3 electrolyte material, Solid State Ionics, 91(1996), p.249.

    Article  CAS  Google Scholar 

  12. M.M. Bućko, Ionic conductivity of CaO-Y2O3-ZrO2 materials with constant oxygen vacancy concentration, J. Eur. Ceram. Soc., 24(2004), p.1305.

    Article  Google Scholar 

  13. T. Ishihara, J.A. Kilner, M. Honda, and Y. Takita, Oxygen surface exchange and diffusion in the new perovskite oxide ion conductor LaGaO3, J. Am. Chem. Soc., 119(1997), p.2747.

    Article  CAS  Google Scholar 

  14. F. Tietz, Thermal expansion of SOFC materials, Ionics, 5(1999), p.129.

    Article  CAS  Google Scholar 

  15. T. Ishihara, M. Honda, T. Shibayana, H. Minami, H. Nishiguchi, and Y. Takita, Intermediate temperature solid oxide fuel cells using a new LaGaO3 based oxide ion conductor, J. Electrochem. Soc., 145(1998), p.3177.

    Article  CAS  Google Scholar 

  16. H. Hayashi, T. Saitou, N. Maruyama, H. Inada, K. Kawamura, and M. Mori, Thermal expansion coefficient of yttria stabilized zirconia for various yttria contents, Solid State Ionics, 176(2005), p.613.

    Article  CAS  Google Scholar 

  17. S. Soepriyanto, A.A. Korda, and T. Hidayat, Development of zircon base industrial product from zircon-sand concentrate of Bangka tin processing, [in] Proceeding of the 3rd International Workshop on Earth Science and Technology, Fukuoka, 2005.

  18. J.I. Langford and A.J.C. Wilson, Scherrer after sixty years: a survey and some new results in the determination of crystallite size, J. Appl. Crystallogr., 11(1978), p.102.

    Article  CAS  Google Scholar 

  19. A.C. Taş, P.J. Majewski, and F. Aldinger, Chemical preparation of pure and strontium and/or magnesium-doped lanthanum gallate powders, J. Am. Ceram. Soc., 83(2000), p.2954.

    Article  Google Scholar 

  20. P. Majewski, M. Rozumek, C.A. Taş, and F. Aldinger, Processing of (La,Sr)(Ga,Mg)O3 solid electrolyte, J. Electroceram., 8(2002), p.65.

    Article  CAS  Google Scholar 

  21. F. Rahmawati, B. Prijamboedi, S. Soepriyanto, and Ismunandar, Doping calcia and yttria into zirconia obtained from by product of tin concentrator to improve its ionic conductivity, ITB J. Sci., 43A(1)(2011), No.1, p.9.

    Article  Google Scholar 

  22. A.R. West, Basic Solid State Chemistry, 2nd Ed., John Wiley & Sons, Ltd., New York, 1999.

    Google Scholar 

  23. R.C. Agrawal and R.K. Gupta, Review superionic solids: composite electrolyte phase—an overview, J. Mater. Sci., 34(1999), p.1131.

    Article  CAS  Google Scholar 

  24. J.H. Gong, Y. Li, Z.L. Tang, Y.S. Xie, and Z.T. Zhang, Temperature-dependence of the lattice conductivity of mixed calcia/yttria-stabilized zirconia, Mater. Chem. Phys., 76(2002), p.212.

    Article  CAS  Google Scholar 

  25. E. Oberg, F. Jones, H. Ryffel, C. McCauley, and R. Heald, Machinery’s Handbook 28th Edition, Industrial Press, New York, 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fitria Rahmawati.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahmawati, F., Prijamboedi, B., Soepriyanto, S. et al. SOFC composite electrolyte based on LSGM-8282 and zirconia or doped zirconia from zircon concentrate. Int J Miner Metall Mater 19, 863–871 (2012). https://doi.org/10.1007/s12613-012-0640-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-012-0640-0

Keywords

Navigation