Skip to main content
Log in

Can we predict blood brain barrier permeability of ligands using computational approaches?

  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

An ideal neurotherapeutics agent for central nervous system (CNS) molecular targets should cross Blood Brain Barrier (BBB) whereas peripherally acting agent should not cross BBB to avoid CNS related side effects. Hence prediction of BBB permeability index has been proved to be an efficient tool for drug discovery and development. Various experimental and computational approaches are being used in recent past for the prediction of BBB permeability and they have been successful up to some extent. However the accuracy and authenticity of these methods have been under question. The current review article attempts to answer a vital question that is, can we predict BBB permeability using computational approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham, M.H., Chadha, H.S., Mitchell, R.C. 1994. Hydrogen bonding. 33. Factors that influence the distribution of solutes between blood and brain. J Pharm Sci 83, 1257–1268.

    Article  PubMed  CAS  Google Scholar 

  2. Abraham, M.H., Chadha, H.S., Mitchell, R.C. 1995. Hydrogen-bonding. Part 36. Determination of blood brain distribution using octanol-water partition coefficients. Drug Des Discov 13, 123–131.

    PubMed  CAS  Google Scholar 

  3. Brewster, M.E., Pop, E., Huang, M.J., Bodor, N. 1996. AM1-based model system for estimation of brain/blood concentration ratios. Int J Quantum Chem 60, 51–63.

    Article  CAS  Google Scholar 

  4. Clark, D.E. 1999. Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 2. Prediction of blood-brain barrier penetration. J Pharm Sci 88, 815–821.

    Article  PubMed  CAS  Google Scholar 

  5. Crivori, P., Cruciani, G., Carrupt, P.A., Testa, B. 2000. Predicting blood-brain barrier permeation from three-dimensional molecular structure. J Med Chem 43, 2204–2216.

    Article  PubMed  CAS  Google Scholar 

  6. Doniger, S., Hofmann, T., Yeh, J. 2002. Predicting CNS permeability of drug molecules: Comparison of neural network and support vector machine algorithms. J Comput Biol 9, 849–864.

    Article  PubMed  CAS  Google Scholar 

  7. Dureja, H., Madan, A.K. 2007. Validation of topochemical models for the prediction of permeability through the blood-brain barrier. Acta Pharm 57, 451–467.

    Article  PubMed  CAS  Google Scholar 

  8. El-Deeb, I.M., Bayoumi, S.M., El-Sherbeny, M.A., Abdel-Aziz, A.A.M. 2010. Synthesis and antitumor evaluation of novel cyclic arylsulfonylureas: ADMET and pharmacophore prediction. Eur J of Med Chem 45, 2516–2530.

    Article  CAS  Google Scholar 

  9. Fan, Y., Unwalla, R., Denny, R.A., Di, L., Kerns, E.H., Diller, D.J., Humblet, C. 2010. Insights for predicting blood-brain barrier penetration of CNS targeted molecules using QSPR approaches. J Chem Inf Model 50, 1123–1133.

    Article  PubMed  CAS  Google Scholar 

  10. Feher, M., Sourial, E., Schmidt, J.M. 2000. A simple model for the prediction of blood-brain partitioning. Int J Pharm 201, 239–247.

    Article  PubMed  CAS  Google Scholar 

  11. Garg, P., Verma, J., Roy, N. 2008. In silico modeling for blood brain barrier permeability predictions. In: Drug Absorption Studies, Volume VII, Springer, US, 510–544.

    Chapter  Google Scholar 

  12. Geldenhuys, W.J., Manda, V.K., Mittapalli, R.K., van der Schyf, C.J., Crooks, P.A., Dwoskin, L.P., Allen, D.D., Lockman, P.R. 2010. Predictive screening model for potential vector-mediated transport ofcationic substrates at the blood-brain barrier choline transporter. Bioorg Med Chem Lett 20, 870–877.

    Article  PubMed  CAS  Google Scholar 

  13. Guangli, M., Yiyu, C. 2006. Predicting Caco-2 permeability using Support Vector Machine and Chemistry Development Kit. J Pharm Pharmaceut Sci 9, 210–221.

    Google Scholar 

  14. Gumbleton, M., Audus, K.L. 2001. Progress and limitations in the use of in vitro cell cultures to serve as permeability screen for the blood-brain barrier. J Pharm Sci 90, 1681–1698.

    Article  PubMed  CAS  Google Scholar 

  15. Hemmateenejad, B., Miri R., Safarpour, M.A., Mehdipour, A.R. 2006. Accurate prediction of the blood-brain partitioning of a large set of solutes using ab-initio calculations and genetic neural network modeling. J Comput Chem 27, 1125–1135.

    Article  PubMed  CAS  Google Scholar 

  16. Hou, T.J., Xu, X.J. 2003. ADME evaluation in drug discovery. 3. Modeling blood-brain barrier partitioning using simple molecular descriptors. J Chem Inf Comput Sci 43, 2137–2152.

    Article  PubMed  CAS  Google Scholar 

  17. Iyer, M., Mishru, R., Han, Y., Hopfinger, A.J. 2002. Predicting blood-brain barrier partitioning of organic molecules using membrane-interaction QSAR analysis. Pharm Res 19, 1611–1621.

    Article  PubMed  CAS  Google Scholar 

  18. Jolliet-Riant, P., Tillement, J.P. 1999. Drug transfer across the blood-brain barrier and improvement of brain delivery. Fundam Clin Pharmacol 13, 16–26.

    Article  PubMed  CAS  Google Scholar 

  19. Katritzky, A.R., Kuanar, M., Slavov, S., Dobchev, D.A., Fara, D.C., Karelson, M., Acree Jr., W.E., Solov’ev, V.P., Varnek, A. 2006. Correlation of bloodbrain penetration using structural descriptors. Bioorg. Med Chem 14, 4888–4917.

    Article  PubMed  CAS  Google Scholar 

  20. Kelder, J., Grootenhuis, P.D., Bayada D.M., Delbressine, L.P., Ploemen, J.P. 1999. Polar molecular surface as a dominating determinant for oral absorption and brain penetration of drugs. Pharm Res 16, 1514–1519.

    Article  PubMed  CAS  Google Scholar 

  21. Keseru, G.M., Molnar, L. 2001. High-throughput prediction of blood-brain partitioning: A thermodynamic approach. J Chem Inf Comput Sci 41, 120–128.

    Article  PubMed  CAS  Google Scholar 

  22. Konovalov, D.A., Sim, N., Deconinck, E., Vander Heyden, Y., Coomans, D. 2008. Statistical confidence for variable selection via Monte Carlo cross-validation. J Chem Inf Model 48, 370–383.

    Article  PubMed  CAS  Google Scholar 

  23. Kortagere, S., Chekmarev, D., Welsh, J.W., Ekins, S. 2008. New predictive models for blood-brain barrier permeability of drug-like molecules. Pharm Res 25, 1836–1845.

    Article  PubMed  CAS  Google Scholar 

  24. Lanevskij, K., Japertas, P., Didziapetris, R., Petrauskas, A. 2009. Ionization-specific prediction of blood-brain permeability. J Pharm Sci 98, 122–134.

    Article  PubMed  CAS  Google Scholar 

  25. Lombardo, F., Blake, J.F., Curatolo, W.J. 1996. Computation of brain-blood partitioning of organic solutes via free energy calculations. J Med Chem 39, 4750–4755.

    Article  PubMed  CAS  Google Scholar 

  26. Luco, J.M. 1999. Prediction of the brain-blood distribution of a large set of drugs from structurally derived descriptors using partial least-squares (PLS) modeling. J Chem Inf Comput Sci 39, 396–404.

    Article  PubMed  CAS  Google Scholar 

  27. Ma, X.L., Chen, C., Yang, J. 2005. Predictive model of blood-brain barrier penetration of organic compounds. Acta Pharmacol Sin 26, 500–512.

    Article  PubMed  CAS  Google Scholar 

  28. Norinder, U., Haeberlein, M. 2002. Computational approaches to the prediction of the blood-brain distribution. Adv Drug Deliv Rev 54, 291–313.

    Article  PubMed  CAS  Google Scholar 

  29. Norinder, U., Sjoberg, P., Osterberg, T. 1998. Theoretical calculation and prediction of brain-blood partitioning of organic solutes using MolSurf parametrization and PLS statistics. J Pharm Sci 87, 952–959.

    Article  PubMed  CAS  Google Scholar 

  30. Pan, D., Iyer, M., Liu, J., Li, Y., Hopfinger, A.J. 2004. Constructing optimum blood brain barrier QSAR models using a combination of 4D-molecular similarity measures and cluster analysis. J Chem Inf Comput Sci 44, 2083–2098.

    Article  PubMed  CAS  Google Scholar 

  31. Pardridge, W.M. 2001. Drug targeting, drug discovery and brain drug development. In: Brain Drug Targeting: The Future of Brain Drug Development, Cambridge University Press, Los Angeles, 1–12.

    Chapter  Google Scholar 

  32. Pardridge, W.M. 2003. Blood-brain barrier drug targeting: the future of brain drug development. Mol Interv 3, 90–105.

    Article  PubMed  CAS  Google Scholar 

  33. Platts, J.A., Abraham, M.H., Zhao, Y.H., Hersey, A., Ijaz, L., Butina, D. 2001. Correlation and prediction of a large blood-brain distribution data set-an LFER study. Eur J Med Chem 36, 719–730.

    Article  PubMed  CAS  Google Scholar 

  34. Rose, K., Hall, L.H., Kier, L.B. 2002. Modeling bloodbrain barrier partitioning using the electrotopological state. J Chem Inf Comput Sci 42, 651–666.

    Article  PubMed  CAS  Google Scholar 

  35. Salminen, T., Pulli, A., Taskinen, J. 1997. Relationship between immobilised artificial membrane chromatographic retention and the brain penetration of structurally diverse drugs. J Pharm Biomed Anal 15, 469–477.

    Article  PubMed  CAS  Google Scholar 

  36. Scala, S., Akhmed, N., Rao, U.S., Paull, K., Lan, L.B., Dickstein, B., Lee, J.S., Elgemeie, G.H., Stein, W.D., Bates, S.E. 1997. P-glycoprotein substrates and antagonists cluster into two distinct groups. Mol Pharmacol 51, 1024–1033.

    PubMed  CAS  Google Scholar 

  37. Smith, Q.R. 2003. A review of blood-brain barrier transport techniques. Methods Mol Med 89, 193–208.

    PubMed  CAS  Google Scholar 

  38. Subramanian, G., Kitchen, D.B. 2003. Computational models to predict blood-brain barrier permeation and CNS activity. J Comput Aided Mol Des 17, 643–664.

    Article  PubMed  CAS  Google Scholar 

  39. van de Waterbeemd, H., Gifford, E. 2003. ADMET in silico modelling: Towards prediction paradise. Nat Rev Drug Discov 2, 192–204.

    Article  PubMed  Google Scholar 

  40. Vilar, S., Chakrabarti, M., Costanzi, S. 2010. Prediction of passive blood-brain partitioning: Straightforward and effective classification models based on in silico derived physicochemical descriptors. J Mol Graph Model 28, 899–903.

    Article  PubMed  CAS  Google Scholar 

  41. Winkler, D.A., Burden, F.R. 2004. Modelling bloodbrain barrier partitioning using Bayesian neural networks. J Mol Graph Model 22, 499–505.

    Article  PubMed  CAS  Google Scholar 

  42. Yang, S.Y., Huang, Q., Li, L.L., Ma, C.Y., Zhang, H., Bai, R., Teng, Q.Z., Xiang, M.L., Wei, Y.Q. 2009. An integrated scheme for feature selection and parameter setting in the support vector machine modeling and its application to the prediction of pharmacokinetic properties of drugs. Artif Intel Med 46, 155–163.

    Article  Google Scholar 

  43. Young, R.C., Mitchell, R.C., Brown, T.H., Ganellin, C.R., Griffiths, R., Jones, M., Rana, K.K., Saunders, D., Smith, I.R., Sore, N.E., Wilks, T.J. 1988. Development of a new physico-chemical model for brain penetration and its application to the design of centrally acting H2 receptor histamine antagonists. J Med Chem 31, 656–671.

    Article  PubMed  CAS  Google Scholar 

  44. Zhang, L., Zhu, H., Oprea, I.T., Golbraikh, A., Tropsha, A. 2008. QSAR modeling of the blood-brain barrier permeability for diverse organic compounds. Pharm Res 25, 1902–1914.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anju Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, R., Sharma, A. & Tiwari, R.K. Can we predict blood brain barrier permeability of ligands using computational approaches?. Interdiscip Sci Comput Life Sci 5, 95–101 (2013). https://doi.org/10.1007/s12539-013-0158-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-013-0158-9

Key words

Navigation