Skip to main content
Log in

Phylogeny of Magnoliaceae based on ten chloroplast DNA regions

  • Original Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Phylogenetic analyses of ten chloroplast DNA regions, ndhF, rbcL, matK, ORF350, trnL intron, trnL-trnF, trnH-psbA, rbcL-atpB, trnK 5′ intron, and trnK 3′ intron (8,719 bp in aligned sequences) from 48 selected taxa were carried out to address phylogenetic questions in the family Magnoliaceae. The major clades in the molecular tree are considerably different from the currently suggested classification system and from the traditionally recognized subgroups in the family. Eleven major clades were recognized with strong support in the subfamily Magnolioideae: (1) MICHELIA clade: Michelia, Elmerrillia, sect. Maingola, sect. Alcimandra, and sect. Aromadendron, (2) YULANIA clade: subgen. Yulania, (3) GYNOPODIUM clade: Pachylarnax, sect. Manglietiastrum, and sect. Gynopodium, (4) KMERIA clade: Kmeria, (5) THEORHODON clade: sect. Theorhodon sensu stricto (excluding sect. Splendentes, which was recently separated from sect. Theorhodon) and sect. Magnolia, (6) GWILLIMIA clade: sect. Gwillimia, sect. Lirianthe, and sect. Blumiana, (7) TALAUMA clade: sect. Talauma and sect. Splendentes, (8) MANGLIETIA clade: Manglietia, (9) RYTIDOSPERMUM clade: sect. Rytidospermum sensu stricto (excluding Magnolia fraseri, M. macrophylla, and M. dealbata) and sect. Oyama, (10) FRASERI clade: M. fraseri, and (11) MACROPHYLLA clade: M. macrophylla and M. dealbata. The recognition of eleven major clades in the subfamily Magnolioideae in this study is in good agreement with previous molecular studies based on less sampling or fewer DNA regions. All of these eleven clades were highly supported with bootstrap values exceeding 80% in both maximum parsimony and maximum likelihood analyses and with posterior probabilities exceeding 0.98 in a Bayesian analysis. However, detailed relationships among the major clades were weakly supported. The molecular data suggest that the taxonomic circumscription of infrafamilial delimitations and compositions should be reconsidered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Azuma HL, Thien B, Kawano S (1999) Molecular phylogeny of Magnolia (Magnoliaceae) inferred from cpDNA sequences and evolutionary divergence of floral scents. J Plant Res 112:291–306

    Article  CAS  Google Scholar 

  • Azuma H, Garcia-Franco JG, Rico-Gray V, Thien LB (2001) Molecular phylogeny of Magnoliaceae, the biogeography of tropical and temperate disjunctions. Amer J Bot 88:2275–2285

    Article  CAS  Google Scholar 

  • Barkman TJ, Chenery JG, McNeal JR, Lyons-Weile J, Ellisens WJ, Moore G, Wolfe AD, dePamphilis CW (2000) Independent and combined analyses of sequences from all three genomic compartments converge on the root of flowering plant phylogeny. Proc Natl Acad Sci USA 97:13166–13171

    Article  PubMed  CAS  Google Scholar 

  • Bohs L, Olmstead RG (1997) Phylogenetic relationships in Solanum (Solanaceae) based on ndhF sequences. Syst Bot 22:5–17

    Article  Google Scholar 

  • Borsch T, Hilu KW, Quandt D, Wilde V, Neinhuis C, Barthlott W (2003) Non-coding plastid trnT-trnF sequences reveal a highly supported phylogeny of basal angiosperms. J Evol Biol 15:558–567

    Article  Google Scholar 

  • Cai Z, Penaflor C, Kuehl JV, Leebens-Mack J, Carlson J, dePamphilis CW, Boore JL, Jansen RK (2006) Complete chloroplast genome sequences of Drimys, Liriodendron, and Piper: Implications for the phylogeny of magnoliids and the evolution of GC content. BMC Evol Biol 6:77

    Article  PubMed  Google Scholar 

  • de Candolle AP (1813) Théorie élémentaire de la botanique, Chez Déterville, Paris Chase MW and 31 authors (1993) Phylogenetics of seed plants: An analysis of nucleotide sequences from the plastid gene rbcL. Ann Missouri Bot Gard 80:528–580

    Google Scholar 

  • Chen BL, Nooteboom HP (1993) Notes on Magnoliaceae III: The Magnoliaceae of China. Ann Missouri Bot Gard 80:999–1104

    Article  Google Scholar 

  • Clark LG, Zhang W, Wendel JF (1995) A phylogeny of the grass family (Poaceae) based on ndhF sequence data. Syst Bot 20:436–460

    Article  Google Scholar 

  • Clegg MT (1993) Chloroplast gene sequences and the study of plant evolution. Proc Natl Acad Sci USA 90:363–367

    Article  PubMed  CAS  Google Scholar 

  • Dandy JE (1927) The genera of Magnoliaceae. Kew Bulletin 1927:275–264

    Google Scholar 

  • Dandy JE (1971) The classification of the Magnoliaceae. Newsletter of the American Magnolia Society 8:3–6

    Google Scholar 

  • Dandy JE (1978) Revised survey of the genus Magnolia together with Manglietia and Michelia, In NG Treseder, Magnolias. Faber and Faber, London, pp 29–37

    Google Scholar 

  • Dilcher DL, Crane PR (1984) Archaeanthus: An early angiosperm from the Cenomanian of the western interior of North America. Ann Missouri Bot Gard 71:351–383

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19:11–15

    Google Scholar 

  • Felsenstein J (1978) Case in which parsimony and compatibility methods will be positively misleading. Syst Zool 27:401–410

    Article  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Figlar RB (2000) Proleptic branch initiation in Michelia and Magnolia subgenus-Yulania provides basis for combinations in subfamily Magnoliaceae, In Y Liu, H Fan, Z Chen, Q Wu, Q. Zeng, eds, Proceedings of the International Symposium on the Family Magnoliaceae, Science Press, Beijing, pp 14–26

    Google Scholar 

  • Figlar RB, Nooteboom HP (2004) Notes on Magnoliaceae IV. Blumea 49:87–100

    Article  Google Scholar 

  • Flook PK, Klee S Rowell HF (1999) Combined molecular phylogenetic analysis of the Orthoptera (Arthropoda, Insecta) and implications for their higher systematics. Syst Biol 48:233–253

    Article  PubMed  CAS  Google Scholar 

  • Fragan BM, Stedje B, Stabbetorp OE, Jensen ES, Jakobsen KS (1994) A general approach for PCR-amplification and sequencing of chloroplast DNA from crude vascular plant and algal tissue. BioTechniques 16:484–494

    Google Scholar 

  • Frodin DG, Govaerts R (1996) World checklist and bibliography of Magnoliaceae, Kew Publishing, Richmond

    Google Scholar 

  • Graham SW, Olmstead RG (2000) Utility of 17 chloroplast genes for inferring the phylogeny of the basal angiosperms. Amer J Bot 87:1712–1730

    Article  CAS  Google Scholar 

  • Hilu KW, Borsch T, Muller K, Soltis DE, Soltis PE, Savolainen V, Chase M, Powell M. Alice L, Evans R, Sauquet H, Neinhuis C, Slotta T, Rohwer J, Chatrou L (2003) Inference of angiosperm phylogeny based on matK sequence information. Amer J Bot 90:758–1776

    Article  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  PubMed  CAS  Google Scholar 

  • Jansen RK, Cai Z, Raubeson LA, Daniell H, dePamphilis CW, Leebens-Mack J, Müller KF, Guisinger-Bellian M, Haberle RC, Hansen AK, Chumley TW, Lee S-B, Peery R, McNeal JR, Kuehl JV, Boore JL (2007) Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc Natl Acad Sci USA 49:19369–19374

    Article  Google Scholar 

  • Johnson LA, Soltis DE (1994) matK DNA sequences and phylogenetic reconstruction in Saxifragaceae s. str. Syst Bot 19:143–156

    Article  Google Scholar 

  • Johnson LA, Soltis DE (1995) Phylogenetic inference in Saxifragaceae sensu stricto and Gilia (Polemoniaceae) using matK sequences. Ann Missouri Bot Gard 82:149–175

    Article  Google Scholar 

  • Johnson LA, Schultz JL, Soltis DE, Soltis PS (1996) Monophyly and generic relationships of Polemoniaceae based on matK sequences. Amer J Bot 83:1207–1224

    Article  CAS  Google Scholar 

  • Judd WD, Campbell CS, Kellogg EA, Stevens PF, Donoghue MJ (2008) Plant systematics: a phylogenetic approach. Sinauer, Sunderland

    Google Scholar 

  • Kim JH, Hart HT, Mes HM (1996) The phylogenetic position of East Asian Sedum species (Crassulaceae) based on chloroplast DNA trnL (UAA)-trnF (GAA) intergenic spacer sequence variation. Acta Botanica Neerlandica 45:309–321

    CAS  Google Scholar 

  • Kim K-J, Jansen RK (1995) ndhF sequence evolution and the major clades in the sunflower family. Proc Natl Acad Sci USA 92:10379–10383

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Park J-W, Kim Y-D, Suh Y (2001) Phylogenetic relationships in family Magnoliaceae inferred from ndhF sequences. Amer J Bot 91:2101–2004

    Google Scholar 

  • Kim S, Yoo M-J, Albert VA, Farris JS, Soltis PS, Soltis DE (2004) Phylogeny and diversification of B-function MADS-box genes in angiosperms: evolution and functional implications of a 260-million-year-old duplication. Amer J Bot 91:2102–2118

    Article  CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparable studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  PubMed  CAS  Google Scholar 

  • Law YW (1984) A preliminary study on the taxonomy of the family Magnoliaceae. Acta Phytotax Sinica 22:80–109

    Google Scholar 

  • Law YW (1996) Magnoliaceae, In Flora Reipublicae Popularis Sinicae. 30(1). Science Press, Beijing, China

    Google Scholar 

  • Li HL (1952) Floristic relationships between eastern Asia and eastern North America. Transactions of the American Philosophical Society 42:371–429

    Article  Google Scholar 

  • Li HL (1972) Eastern Asia-eastern North America species-pairs in wide ranging genera, In A Graham ed, Floristics and paleofloristics of Asia and eastern North America, Elsevier, Amsterdam, pp 65–78

    Google Scholar 

  • Maddison DR (1991) The discovery and importance of multiple islands of most-parsimonious trees. Syst Zoo 40:315–328

    Article  Google Scholar 

  • Magallón S, Sanderson MJ (2001) Absolute diversification rates in angiosperm clades. Evolution 55:1762–1780

    PubMed  Google Scholar 

  • Mathews S, Donoghue MJ (1999) The root of angiosperm phylogeny inferred from duplicate phytochrome genes. Science 268:947–950

    Article  Google Scholar 

  • Mishler BD (1994) Cladistic analysis of molecular and morphological data. American Journal of Physical Anthropology 94:143–156

    Article  PubMed  CAS  Google Scholar 

  • Mishler BD, Soltis PS, Soltis DE (1998) Compartmentalization in phylogeny reconstruction: philosophy and practice, DIMACS Report, Princeton

    Google Scholar 

  • Moore MJ, Bell CD, Soltis PS, Soltis DE (2007) Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. Proc Natl Acad Sci USA 104:19363–19368

    Article  PubMed  Google Scholar 

  • Morgan D, Soltis DE (1993) Phylogenetic relationships among members of Saxifragaceae sensu lato based on rbcL sequence data. Ann Missouri Bot Gard 80:631–660

    Article  Google Scholar 

  • Nickerson J, Drouin G (2004) The sequence of the largest subunit of RNA polymerase II is a useful marker for inferring seed plant phylogeny. Mol Phylogenet Evol 31:403–415

    Article  PubMed  CAS  Google Scholar 

  • Nie Z-L, Wen J, Zauma H, Qiu Y-L, Sun H, Meng, Y, Sun W-B, Zimmer EA (2008) Phylogenetic and biogeographic complexity of Magnoliaceae in the Northern Hemisphere inferred from three nuclear data sets. Mol Phylogenet Evol 48:1027–1040

    Article  PubMed  CAS  Google Scholar 

  • Nooteboom HP (1985) Notes on Magnoliaceae, with a revision of Pachylarnax and Elmerrillia and the Malesian species of Manglietia and Michelia. Blumea 31:65–12

    Google Scholar 

  • Nooteboom HP (1993) Magnoliaceae, In K Kubitzki, JG Rohwer, V Bittrich, eds, The families and genera of vascular plants, vol. II, Springer-Verlag, New York, pp 391–401

    Google Scholar 

  • Nooteboom HP (2000) Different looks at the classification of the Magnoliaceae. In Y Liu, H Fan, Z Chen, Q Wu, Q Zeng eds, Proceedings of the International Symposium on the Family Magnoliaceae. Science Press, Beijing, pp 26–38

    Google Scholar 

  • Olmstead RG, Sweere JA (1994) Combining data in phylogenetic systematics: An empirical approach using three molecular data sets in the Solanaceae. Syst Biol 43:467–481

    Article  Google Scholar 

  • Olmstead RG, Palmer JD (1994) Chloroplast DNA systematics: A review of method and data analysis. Amer J Bot 81:1205–1224

    Article  CAS  Google Scholar 

  • Olmstead RG, Reeves PA (1995) Evidence for the polyphyly of the Scrophulariaceae based in chloroplast rbcL and ndhF sequences. Annals of the Missouri Botanical Garden 82:176–193

    Article  Google Scholar 

  • Osako T, Ohnishi O (2000) Intra- and interspecific phylogeny of wild Fagopyrum (Polygonaceae) species based on nucleotide sequences of noncoding regions in chloroplast DNA. Amer J Bot 87:573–582

    Article  Google Scholar 

  • Oxelman B, Backlund BM, Bremer B (1999) Relationships of Buddlejaceae s. l. Investigated using parsimony jackknife and branch support analysis of chloroplast ndhF and rbcL sequence data. Syst Bot 24:164–182

    Article  Google Scholar 

  • Palmer JD, Jansen RK, Michaels HJ, Chase MW, Manhart JR (1988) Chloroplast DNA variation and plant phylogeny. Ann Missouri Bot Gard 75:1180–1206

    Article  Google Scholar 

  • Parkinson CL, Adams KL, Palmer JD (1999) Multigene analyses identify the three earliest lineages of extant flowering plants. Curr Biol 9:1485–1488

    Article  PubMed  CAS  Google Scholar 

  • Plunkett GM, Soltis DE, Soltis PS (1996) Evolutionary pattern in Apiaceae: inferences based on matK sequence data. Syst Bot 21:477–495

    Article  Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  PubMed  CAS  Google Scholar 

  • Qiu YL, Parks CR, Chase MW (1995a) Molecular divergence in the eastern Asian-eastern North America disjunct section Rytidospermum of Magnolia (Magnoliaceae). Amer J Bot 82:1589–1598

    Article  Google Scholar 

  • Qiu YL, Chase MW, Parks CR (1995b) A chloroplast DNA phylogenetic study of the eastern Asia-eastern North America disjunct section Rytidospermum of Magnolia (Magnoliaceae). Amer J Bot 82:1582–1588

    Article  Google Scholar 

  • Qiu YL, Lee J, Lu Y-L, Bernasconi-q F, Soltis DE, Soltis PS, Zanis M, Zimmer EA, Chen Z, Savolainen V, Chase MW (1999) The earliest angiosperms: Evidence from mitochondrial, plastid and nuclear genomes. Nature 402:404–407

    Article  PubMed  CAS  Google Scholar 

  • Qiu YL, Lee J, Bernasconi-Quadroni F, Soltis DE, Soltis PS, Zanis M, Zimmer EA, Chen Z, Savolainen V, Chase MW (2000) Phylogeny of basal angiosperms: analyses of five genes from three genomes. Int J Plant Sci 161:S3–S27

    Article  CAS  Google Scholar 

  • Richardson JE, Fay MF, Cronk QCB, Bowman D, Chase MW (2000) A phylogenetic analysis of Rhamnaceae using rbcL and trnL-F plastid DNA sequences. Amer J Bot 87:1309–1324

    Article  CAS  Google Scholar 

  • Sang T, Crawford DJ, Stuessy TF (1997) Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). Amer J Bot 84:1120–1136

    Article  CAS  Google Scholar 

  • Scotland RW, Sweere JA, Reeves PA, Olmstead RG (1995) Higherlevel systematics of Acanthaceae determined by chloroplast DNA sequences. Amer J Bot 82:266–275

    Article  Google Scholar 

  • Soltis DE, Soltis PS (1997) Phylogenetic relationships in Saxifragaceae sensu lato: a comparison of topologies based on 18S rDNA and rbcL sequences. Amer J Bot 84:504–522

    Article  CAS  Google Scholar 

  • Soltis DE, Kuzoff RK, Conti E, Gornall R, Ferguson K (1996) matK and rbcL gene sequence data indicate that Saxifraga (Saxifragaceae) is polyphyletic. Amer J Bot 83:371–382

    Article  CAS  Google Scholar 

  • Soltis DE, Smith SA, Cellinese N, Wurdack KJ, Tank DC, Brockington SF, Refulio-Rodriguez NF, Walker JB, Moore MJ, Carlsward BS, Bell CD, Latvis M, Crawley S, Black C, Diouf D, Zi Z, Rushworth CA, Gitzendanner MA, Sytsma, KJ, Qiu Y-L, Hilu KW, Davis CC, Sanderson MJ, Beaman, RS, Olmstead RG, Judd WS, Donoghue MJ, Soltis PS (2011) Angiosperm phylogeny: 17 genes, 640 taxa. Amer J Bot 98:704–730.

    Article  Google Scholar 

  • Soltis PS, Soltis DE, Chase MW (1999) Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature 402:402–404

    Article  PubMed  CAS  Google Scholar 

  • Soltis PS, Soltis DE, Zanis M, Kim S (2000) Basal lineages of angiosperms: relationships and implications for floral evolution. Int J Plant Sci 161:97–107

    Article  Google Scholar 

  • Spongberg SA (1998) Magnoliaceae hardy in cooler temperate regions, In D Hunt ed, Magnolias and their allies, David Hunt, Milborne Port, pp 81–144

    Google Scholar 

  • Spjut RW (1994) A systematic treatment of fruit types, Memoirs of the New York botanical garden vol. 70, The New York botanical garden, New York

    Google Scholar 

  • Steel KP, Vilgalys R (1994) Phylogenetic analyses of Polemoniaceae using nucleotide sequences of the plastid gene matK. Syst Bot 19:126–142

    Article  Google Scholar 

  • Swofford DL (2001) PAUP* 4.0b10: Phylogenetic analysis using parsimony (*and other methods), version 4, Sinauer, Sunderland

    Google Scholar 

  • Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109

    Article  PubMed  CAS  Google Scholar 

  • Takhtajan A (1969) Diversity and classification of flowering plants, Columbia University Press, New York

    Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Thorne RF (1993) Magnoliaceae, In VH Heywood, ed, Flowering plants of the world, Oxford University Press, New York, pp 27–28

    Google Scholar 

  • Vázquez-Garcia JA (1994) Magnolia (Magnoliaceae) in Mexico and Central America: a synopsis. Brittonia 46:1–23

    Article  Google Scholar 

  • Xia N-H, Liu Y-H, Nooteboom HP (2008) Magnoliaceae, In Flora of China, Vol 7, Science Press & Missouri Botanical Garden Press, Beijing and St. Louis

    Google Scholar 

  • Zanis MJ, Soltis DE, Soltis PE, Mathews S, and Donoghue MJ (2002) The root of the angiosperms revisited. Proc Natl Acad Sci USA 99:6848–6853

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngbae Suh.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S., Suh, Y. Phylogeny of Magnoliaceae based on ten chloroplast DNA regions. J. Plant Biol. 56, 290–305 (2013). https://doi.org/10.1007/s12374-013-0111-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-013-0111-9

Keywords

Navigation