Skip to main content
Log in

Molecular screening of Streptomyces isolates for antifungal activity and family 19 chitinase enzymes

  • Articles
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Thirty soil-isolates of Streptomyces were analyzed to determine their antagonism against plant-pathogenic fungi including Fusarium oxysporum, Pythium aristosporum, Colletotrichum gossypii, and Rhizoctonia solani. Seven isolates showed antifungal activity against one or more strain of the tested fungi. Based on the 16S rDNA sequence analysis, these isolates were identified as Streptomyces tendae (YH3), S. griseus (YH8), S. variabilis (YH21), S. endus (YH24), S. violaceusniger (YH27A), S. endus (YH27B), and S. griseus (YH27C). The identity percentages ranged from 98 to 100%. Although some isolates belonged to the same species, there were many differences in their cultural and morphological characteristics. Six isolates out of seven showed chitinase activity according to a chitinolytic activity test and on colloidal chitin agar plates. Based on the conserved regions among the family 19 chitinase genes of Streptomyces sp. two primers were used for detection of the chitinase (chiC) gene in the six isolates. A DNA fragment of 1.4 kb was observed only for the isolates YH8, YH27A, and YH27C. In conclusion, six Streptomyces strains with potential chitinolytic activity were identified from the local environment in Taif City, Saudi Arabia. Of these isolates, three belong to family 19 chitinases. To our knowledge, this is the first reported presence of a chiC gene in S. violaceusniger YH27A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Kahtani, M., AI-Khalil, A., AI-Kadeeb, S., and Hassan, H.Z. 2008. Molecular genetic fingerprint of some Streptomyces isolated from Riyadh city. Saudi J. Biological Sci. 15, 243–251.

    Google Scholar 

  • Blaak, H., Schnellmann, J., Walter, S., Henrissat, B., and Schrempf, H. 1993. Characteristics of an exochitinase from Streptomyces olivaceoviridis, its corresponding gene, putative protein domains and relationship to other chitinases. Eur. J. Biochem. 214, 659–669.

    Article  PubMed  CAS  Google Scholar 

  • Bonjar, S., Fooladi, M.H., Mahdavi, M.J., and Shahghasi, A. 2004. Broadspectrim, a novel antibacterial from Streptomyces sp. Biotechnol. 3, 126–130.

    Article  Google Scholar 

  • Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Collinge, D.B., Kragh, K.M., Mikkelsen, J.D., Nielsen, K.K., Rasmussen, U., and Vad, K. 1993. Plant chitinases. Plant J. 3, 31–40.

    Article  PubMed  CAS  Google Scholar 

  • Davies, G. and Henrissat, B. 1995. Structures and mechanisms of glycosyl hydrolases. Structure 3, 853–859.

    Article  PubMed  CAS  Google Scholar 

  • Errakhi, R., Bouteau, F., Lebrihi, A., and Barakate, M. 2010. Evidences of biological control capacities of Streptomyces spp. against Sclerotium rolfsii responsible for damping-off disease in sugar beet (Beta vulgaris L.). World J. Microbiol. Biotechnol. 23, 1503–1509.

    Article  Google Scholar 

  • Fujii, T. and Miyashita, K. 1993. Multiple domain structure in a chitinase gene (chiC) of Streptomyces lividans. J. Gen. Microbiol. 139, 677–686.

    PubMed  CAS  Google Scholar 

  • Heitz, T., Segond, S., Kaumann, S., Georoy, P., Prasad, V., Brunner, F., Fritig, B., and Legrand, M. 1994. Molecular characterization of a novel tobacco pathogenesis-related (PR) protein: a new plant chitinase/lysozyme. Mol. Gen. Genet. 245, 246–254.

    Article  PubMed  CAS  Google Scholar 

  • Henrissat, B. 1991. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 280, 309–316.

    PubMed  CAS  Google Scholar 

  • Henrissat, B. and Bairoch, A. 1993. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 293, 781–788.

    PubMed  CAS  Google Scholar 

  • Hoster, F., Schmitz, J.E., and Daniel, R. 2005. Enrichment of chitinolytic microorganisms: isolation and characterization of a chitinase exhibiting antifungal activity against phytopathogenic fungi from a novel Streptomyces strain. Appl. Microbiol. Biotechnol. 66, 434–442.

    Article  PubMed  CAS  Google Scholar 

  • Itoh, Y., Kawase, T., Nikaidou, N., Fukada, H., Mitsutomi, M., Watanabe, T., and Itoh, Y. 2002. Functional analysis of the chitin-binding domain of a family 19 chitinase from Streptomyces griseus HUT6037: substrate-binding affinity and cis-dominant increase of antifungal function. Biosci. Biotechnol. Biochem. 66, 1084–1092.

    Article  PubMed  CAS  Google Scholar 

  • Kawase, T., Saito, A., Sato, T., Kanai, R., Fujii, T., Nikaidou, N., Miyashita, K., and Watanabe, T. 2004. Distribution and phylogenetic analysis of family 19 chitinases in Actinobacteria. Appl. Environ. Microbiol. 70, 1135–1144.

    Article  PubMed  CAS  Google Scholar 

  • Kawase, T., Yokokawa, S., Saito, A., Fujii, T., Nikaidou, N., Miyashita, K., and Watanabe, T. 2006. Comparison of enzymatic and antifungal properties between family 18 and 19 chitinases from S. coelicolor A3 (2). Biosci. Biotechnol. Biochem. 70, 988–998.

    Article  PubMed  CAS  Google Scholar 

  • Keiser, T., Bibb, M.J., Buttner, M.J., Chater, K.F., and Hopwood, D.A. 2000. General introduction to actinomycete biology, pp. 1–21. In Practical Streptomyces genetics. The John Innes Foundation, England.

    Google Scholar 

  • Kim, K. and Ji, H.-S. 2001. Effect of chitin sources on production of chitinase and chitosanase by Streptomyces griseus HUT 6037. Biotechnol. Bioprocess Eng. 6, 18–24.

    Article  CAS  Google Scholar 

  • Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120.

    Article  PubMed  CAS  Google Scholar 

  • Leah, R., Tommerup, H., Svendsen, I., and Mundy, J. 1991. Biochemical and molecular characterization of three barley seed proteins with antifungal properties. J. Biol. Chem. 266, 1564–1573.

    PubMed  CAS  Google Scholar 

  • McSpadden-Gardener, B.B. and Fravel, D.R. 2002. Biological control of plant pathogens: Research, commercialization and application in the USA. http://www.apsnet.org/online/feature/biocontrol/to p.html.

  • Miyashita, K. and Fujii, T. 1993. Nucleotide sequence and analysis of a gene (chiA) for chitinase from Streptomyces lividans 66. Biosci. Biotechnol. Biochem. 57, 1691–1698.

    Article  PubMed  CAS  Google Scholar 

  • Miyashita, K., Fujii, T., Watanabe, W., and Ueno, H. 1997. Nucleotide sequence and expression of a gene (chiB) for a chitinase from Streptomyces lividans. J. Ferment. Bioeng. 83, 26–31.

    Article  CAS  Google Scholar 

  • Miyashita, K., Fujii, T., and Sawada, Y. 1991. Molecular cloning and characterization of chitinase genes from Streptomyces lividans 66. J. Gen. Microbiol. 137, 2065–2072.

    CAS  Google Scholar 

  • Narayana, K.J.P. and Vijayalakshmi, M. 2009. Chitinase production by Streptomyces sp. Anu 6277. Braz. J. Microbiol. 40, 725–733.

    Google Scholar 

  • Ohno, T., Armand, S., Hata, T., Nikaidou, N., Henrissat, B., Mitsutomi, M., and Watanabe, T. 1996. A modular family 19 chitinase found in the prokaryotic organism Streptomyces griseus HUT 6037. J. Bacteriol. 178, 5065–5070.

    PubMed  CAS  Google Scholar 

  • Omura, S. 1986. Philosophy of new drug discovery. Microbiol. Rev. 50, 259–279.

    PubMed  CAS  Google Scholar 

  • Ordentlich, A., Elad, Y., and Chet, I. 1988. The role of chitinase of Serratia marcescens in biocontrol of Sclerotium rolfsii. Phytopathology 787, 84–88.

    Google Scholar 

  • Park, H.S., John, J., and Kilbane, I.I. 2006. Rapid detection and high-resolution discrimination of the genus Streptomyces based on 16S rRNA spacer region and denaturing gradient gel electrophoresis. J. Ind. Microbiol. Biotechnol. 33, 289–297.

    Article  PubMed  CAS  Google Scholar 

  • Patil, R.S., Ghormade, V., and Deshpande. M.V. 2000. Chitinolytic enzymes: an expoloration. Enzyme Microb. Technol. 26, 473–483.

    Article  PubMed  CAS  Google Scholar 

  • Robbins, P.W., Albright, C., and Benfield, B. 1988. Cloning and expression of a Streptomyces plicatus chitinase (chitinase-63) in Escherichia coli. J. Biol. Chem. 263, 443–447.

    PubMed  CAS  Google Scholar 

  • Robbins, P.W., Oberbye, K., Albright, C., Benfield, B., and Pero, J. 1992. Cloning and high-level expression of chitinase-encoding gene of Streptomyces plicatus. Gene 111, 69–76.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, W.K. and Selitrennikoff, C.P. 1986. Isolation and partial characterization of two antifungal proteins from barley. Biochim. Biophys. Acta 880, 161–170.

    Article  PubMed  CAS  Google Scholar 

  • Saito, A., Fujii, T., Yoneyama, T., and Miyashita, K. 1998. glkA is involved in glucose repression of chitinase production in Streptomyces lividans. J. Bacteriol. 180, 2911–2914.

    PubMed  CAS  Google Scholar 

  • Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.

    PubMed  CAS  Google Scholar 

  • Sambrook, J., Fritsch, E.F., and Maniatis, T. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., USA.

    Google Scholar 

  • Shanmugaiah, V., Mathivanan, N., Balasubramanian, N., and Manoharan, P.T. 2008. Optimization of cultural conditions for production of chitinase by Bacillus laterosporous MML2270 isolated from rice rhizosphere soil. Afr. J. Biotechnol. 7, 2562–2568.

    CAS  Google Scholar 

  • Shirling, E.B. and Gottlieb, D. 1966. Methods for characterization of Streptomyces species. Inst. J. Syst. Bacteriol. 16, 313–340.

    Article  Google Scholar 

  • Suresh, P.V. and Chandrasekaran, M. 1998. Utilization of prawn waste for chitinase production by the marine fungus Beauveria bassiana by solid state fermentation. World J. Microbiol. Biotechnol. 14, 655–660.

    Article  CAS  Google Scholar 

  • Taechowisan, T., Peberdy, F.P., and Lumyong, S. 2004. PCR cloning and heterologous expression of chitinase gene of endophytic Streptomyces aureofaciens CMUAc130. J. Gen. Appl. Microbiol. 50, 177–182.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. 1997. The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24, 4876–4882.

    Article  Google Scholar 

  • Tripathi, G. and Rawal, S.K. 1998. Simple and efficient protocol for isolation of high molecular weight DNA from Streptomyces aureofaciens. Biotechnol. Tech. 12, 629–631.

    Article  CAS  Google Scholar 

  • Tsujibo, H., Endo, H., Minoura, K., Miyamoto, K., and Inamori, Y. 1993. Cloning and sequence analysis of the gene encoding a thermostable chitinase from Streptomyces thermoviolaceus OPC-520. Gene 134, 113–117.

    Article  PubMed  CAS  Google Scholar 

  • Tsujibo, H., Okamoto, T., Hatano, N., Miyamoto, K., Watanabe, T., Mitsutomi, M., and Inamori, Y. 2000. Family 19 chitinases from Streptomyces thermoviolaceus OPC-520: Molecular cloning and characterization. Biosci. Biotechnol. Biochem. 64, 2445–2453.

    Article  PubMed  CAS  Google Scholar 

  • Vyas, P. and Deshpande, M.V. 1989. Chitinase production by Myrothecium verrucaria and its significant for fungal mycelia degradation. J. Gen. Appl. Microbiol. 35, 343–350.

    Article  CAS  Google Scholar 

  • Vyas, P. and Deshpande, M.V. 1991. Enzymatic hydrolysis of chitin by Myrothecium verrucaria chitinase complex and its utilization to produce SCP. J. Gen. Appl. Microbiol. 37, 267–275.

    Article  CAS  Google Scholar 

  • Watanabe, T., Kanai, R., Kawase, T., Tanabe, T., Misutomi, M., Sakuda, S., and Miyashita, K. 1999. Family 19 chitinase of Streptomyces species: characterization and distribution. Microbiology 145, 3353–3363.

    Article  PubMed  CAS  Google Scholar 

  • Weisburg, W.G., Barns, S.M., Pelletier, D.A., and Lane, D.J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697–703.

    PubMed  CAS  Google Scholar 

  • Weisburg, W.G., Tully, J.G., Rose, D.L., Petzel, J.P., Oyaizu, H., Yang, D., Mandelco, L., Sechrest, J., Lawrence, T.G., Van Etten, J., and et al. 1989. A phylogenetic analysis of the mycoplasmas: basis for their classification. J. Bacteriol. 171, 6455–6467.

    PubMed  CAS  Google Scholar 

  • Williams, S.T., Goodfellow, M., Alderson, G., Wellington, E.M.H., Sneath, P.H.A., and Sackin, M. 1983. Numerical classification of Streptomyces and related genera. J. Gen. Microbiol. 129, 1743–1813.

    PubMed  CAS  Google Scholar 

  • Xiao, K., Kinkel, L.L., and Samac, D.A. 2002. Biological control of phytophthora root rots on alfalfa and soybean with Streptomyces. Biol. Control. 23, 285–295.

    Article  CAS  Google Scholar 

  • Yücel, S. and Yamaç M. 2010. Selection of Streptomyces isolates from turkish karstic caves against antibiotic resistant microorganisms. Pak. J. Pharm. Sci. 23, 1–6.

    PubMed  Google Scholar 

  • Zarandi, M.E., Shahidi Bonjar, G.H., Dehkaei, F.P., Moosavi, S.A.A., Farokhi, P.R., and Aghighi, S. 2009. Biological control of rice blast (Magnaporthe oryzae) by use of Streptomyces sindeneusis isolate 263 in greenhouse. Am. J. Appl. Sci. 6, 194–199.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youssuf Gherbawy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gherbawy, Y., Elhariry, H., Altalhi, A. et al. Molecular screening of Streptomyces isolates for antifungal activity and family 19 chitinase enzymes. J Microbiol. 50, 459–468 (2012). https://doi.org/10.1007/s12275-012-2095-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-012-2095-4

Keywords

Navigation