Skip to main content
Log in

Transcriptomic analysis of Haematococcus lacustris during astaxanthin accumulation under high irradiance and nutrient starvation

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

In this study, a cDNA microarray was developed from over 60,000 mRNA readings to analyze the expression profiles of transcriptomes of Haematococcus lacustris under astaxanthin-inducing culture conditions, high irradiance and nitrate starvation. Among 20,033 genes on the cDNA microarray, 2,675 genes exhibited a twofold or greater difference in expression. Of these, 1,333 genes were up-regulated and 1,342 genes were down-regulated. A significant decrease in the expression of chlorophyll biosynthesis and light harvesting complex (LHC) related genes were observed under astaxanthin inducing conditions (forming red cyst cells). On the other hand, respirationrelated genes, lipid metabolism-related genes and stress response-related genes were activated in the red cyst cells under stress conditions. These results enabled a better understanding of the cell responses during stress induction of H. lacustris such as photosynthesis, respiration, and some biopathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boussiba, S. (2000) Carotenogenesis in the green alga Haematococcus pluvialis: Cellular physiology and stress response. Physiol. Plant 108: 111–117.

    Article  CAS  Google Scholar 

  2. Guerin, M., M. E. Huntley, and M. Olaizola (2003) Haematococcus astaxanthin: Applications for human health and nutrition. Trends Biotechnol. 21: 210–216.

    Article  CAS  Google Scholar 

  3. Kobayashi, M., T. Kakizono, and S. Nagai (1993) Enhanced carotenoid biosynthesis by oxidative stress in acetate-induced cyst cells of a green unicellular alga, Haematococcus pluvialis. Appl. Environ. Microbiol. 59: 867–873.

    CAS  Google Scholar 

  4. Kim, J. -D. (2008) Proteomic analysis of protein expression patterns associated with astaxanthin accumulation by green alga haematococcus pluvialis (Chlorophyceae) under high light stress. J. Microbiol. Biotechnol. 16: 1222–1228.

    Google Scholar 

  5. Tran, N. P., J. K. Park, and C. G. Lee (2009) Proteomics analysis of proteins in green alga Haematococcus lacustris (Chlorophyceae) expressed under combined stress of nitrogen starvation and high irradiance. Enz. Microb. Technol. 45: 241–246.

    Article  CAS  Google Scholar 

  6. Eom, H., C. G. Lee, and E. Jin (2006) Gene expression profile analysis in astaxanthin-induced Haematococcus pluvialis using a cDNA microarray. Planta 223: 1231–1242.

    Article  CAS  Google Scholar 

  7. Kim, M., S. Park, J. E. W. Polle, and E. Jin (2010) Gene expression profiling of Dunaliella sp. acclimated to different salinities. Phycol. Res. 58: 17–28.

    Article  CAS  Google Scholar 

  8. Kok, B. (1949) On the interrelation of respiration and photosynthesis in green plants. Biochim. Biophys. Acta 3: 625–631.

    Article  CAS  Google Scholar 

  9. Kobayashi, M. (2003) Astaxanthin biosynthesis enhanced by reactive oxygen species in the green alga Haematococcus pluvialis. Biotechnol. Bioproc. Eng. 8: 322–330.

    Article  CAS  Google Scholar 

  10. Vidhyavathi, R., L. Venkatachalam, R. Sarada, and G. A. Ravishankar (2008) Regulation of carotenoid biosynthetic genes expression and carotenoid accumulation in the green alga Haematococcus pluvialis under nutrient stress conditions. J. Exp. Bot. 59: 1409–1418.

    Article  CAS  Google Scholar 

  11. Novoselov, S. V., M. Rao, N. V. Onoshko, H. Zhi, G. V. Kryukov, Y. Xiang, D. P. Weeks, D. L. Hatfield, and V. N. Gladyshev (2002) Selenoproteins and selenocysteine insertion system in the model plant cell system, Chlamydomonas reinhardtii. EMBO J. 21: 3681–3693.

    Article  CAS  Google Scholar 

  12. Powers, H. J. (2003) Riboflavin (vitamin B-2) and health. Am. J. Clin. Nutr. 77: 1352–1360.

    CAS  Google Scholar 

  13. Yokozawa, T., E. Dong, Z. W. Liu, and M. Shimizu (1997) Antioxidative activity of flavones and flavonols in vitro. Phytother. Res. 11: 446–449.

    Article  CAS  Google Scholar 

  14. Blokker, P., S. Schouten, H. Van Den Ende, J. W. De Leeuw, and S. Sinninghe Damste Jaap (1998) Cell wall-specific [omega]-hydroxy fatty acids in some freshwater green microalgae. Phytochem. 49: 691–695.

    Article  CAS  Google Scholar 

  15. Levy, H., T. Tal, A. Shaish, and A. Zamir (1993) Cbr, an algal homolog of plant early light-induced proteins, is a putative zeaxanthin binding protein. J. Biol. Chem. 268: 20892–20896.

    CAS  Google Scholar 

  16. Vidhyavathi, R., R. Sarada, and G. A. Ravishankar (2009) Expression of carotenogenic genes and carotenoid production in Haematococcus pluvialis under the influence of carotenoid and fatty acid synthesis inhibitors. Enz. Microb. Technol. 45: 88–93.

    Article  CAS  Google Scholar 

  17. Lotan, T. and J. Hirschberg (1995) Cloning and expression in Escherichia coli of the gene encoding [beta]-C-4-oxygenase, that converts [beta]-carotene to the ketocarotenoid canthaxanthin in Haematococcus pluvialis. FEBS Lett. 364: 125–128.

    Article  CAS  Google Scholar 

  18. Li, Y., M. Sommerfeld, F. Chen, and Q. Hu (2010) Effect of photon flux densities on regulation of carotenogenesis and cell viability of Haematococcus pluvialis (Chlorophyceae). J. Appl. Phycol. 22: 253–263.

    Article  CAS  Google Scholar 

  19. Wolff, M., M. Seemann, B. Tse Sum Bui, Y. Frapart, D. Tritsch, A. G. Estrabot, M. Rodriguez-Concepcion, A. Boronat, A. Marquet, and M. Rohmer (2003) Isoprenoid biosynthesis via the methylerythritol phosphate pathway: the (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase (LytB/IspH) from Escherichia coli is a [4Fe-4S] protein. FEBS Lett. 541: 115–120.

    Article  CAS  Google Scholar 

  20. Fox, D. T. and C. D. Poulter (2002) Synthesis of (E)-4-Hydroxydimethylallyl diphosphate. An intermediate in the methyl erythritol phosphate branch of the isoprenoid pathway. J. Org. Chem. 67: 5009–5010.

    Article  CAS  Google Scholar 

  21. Rohmer, M. (1999) The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat. Prod. Rep. 16: 565–574.

    Article  CAS  Google Scholar 

  22. Benoit, S., R. Nour-Eddine, R. Jaouad, and L. Yves (2001) Astaxanthin accumulation in Haematococcus requires a cytochrome P450 hydroxylase and an active synthesis of fatty acids. FEBS Lett. 500: 125–128.

    Article  Google Scholar 

  23. Bogos, B., B. Ughy, I. Domonkos, H. Laczko-Dobos, J. Komenda, L. Abasova, K. Cser, I. Vass, A. Sallai, H. Wada, and Z. Gombos (2009) Phosphatidylglycerol depletion affects photosystem II activity in Synechococcus sp. PCC 7942 cells. Photosynth. Res. 103: 19–30.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Choul-Gyun Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, DK., Hong, SJ., Bae, JH. et al. Transcriptomic analysis of Haematococcus lacustris during astaxanthin accumulation under high irradiance and nutrient starvation. Biotechnol Bioproc E 16, 698–705 (2011). https://doi.org/10.1007/s12257-011-0081-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-011-0081-z

Keywords

Navigation