Skip to main content

Advertisement

Log in

Aquaculture Disturbance Impacts the Diet but not Ecological Linkages of a Ubiquitous Predatory Fish

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Aquaculture operations are a frequent and prominent cause of anthropogenic disturbance to marine and estuarine communities and may alter species composition and abundance. However, little is known about how such disturbances affect trophic linkages or ecosystem functions. In Puget Sound, Washington, aquaculture of the Pacific geoduck clam (Panopea generosa) is increasing and involves placing nets and polyvinyl chloride (PVC) tubes in intertidal areas to protect juvenile geoducks from predators. Initial studies of the structured phase of the farming cycle have documented limited impacts on the abundance of some species. To examine the effect of geoduck aquaculture on ecological linkages, the trophic relationships of a local ubiquitous consumer, Pacific staghorn sculpin (Leptocottus armatus), to its invertebrate prey were compared between geoduck aquaculture sites and nearby reference areas with no aquaculture. Mark-recapture data indicated that sculpin exhibit local site fidelity to cultured and reference areas. The stomach contents of sculpin and stable isotope signatures of sculpin and their prey were examined to study the trophic ecology of cultured and reference areas. Results showed that the structured phase of geoduck aquaculture initiated some changes to staghorn sculpin ecology, as reflected in sculpin diet through stomach content analysis. However, carbon and nitrogen stable isotopes revealed that the general food web function of sculpin remained unchanged. The source of carbon at the base of the food web and the trophic position of sculpin were not impacted by geoduck aquaculture. The study has important implications for geoduck aquaculture management and will inform regulatory decisions related to shellfish aquaculture policy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abeels, H.A., A.N. Loh, and A.K. Volety. 2012. Trophic transfer and habitat use of oyster Crassostrea virginica reefs in southwest Florida, identified by stable isotope analysis. Marine Ecology Progress Series 462: 125–142. doi:10.3354/meps09824.

    Article  Google Scholar 

  • Akaike, Hirotugu. 1973. Information theory as an extension of the maximum likelihood principle. In Second international symposium on information theory, ed. B.N. Petrov and F. Csaki, 267–281. Budapest: Akaemiai Kiado.

    Google Scholar 

  • Anderson, Aven Mayer. 1971. Spawning, growth, and spatial distribution of the geoduck clam, Panope generosa (Gould) in Hood Canal. Washington: Dissertation, University of Washington.

    Google Scholar 

  • Anderson, Marti J. 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26: 32–46. doi:10.1111/j.1442-9993.2001.01070.pp.x.

    Google Scholar 

  • Anderson, Marti J., and Daniel C.I. Walsh. 2013. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: what null hypothesis are you testing? Ecological Monographs 83: 557–574. doi:10.1890/12-2010.1.

  • Armstrong, Janet L., David A. Armstrong, and Stephen B. Mathews. 1995. Food habits of estuarine staghorn sculpin, Leptocottus armatus, with focus on consumption of juvenile Dungeness crab, Cancer magister. Fishery Bulletin 93: 456–470.

    Google Scholar 

  • Asmus, Ragnhild M., and Harald Asmus. 1991. Mussel beds: limiting or promoting Phytoplankton? Journal of Experimental Marine Biology and Ecology 148: 215–232. doi:10.1016/0022-0981(91)90083-9.

    Article  Google Scholar 

  • Beckmann, Crystal L., James G. Mitchell, Laurent Seuront, David A.J. Stone, and Charlie Huveneers. 2013. Experimental evaluation of fatty acid profiles as a technique to determine dietary composition in benthic elasmobranchs. Physiological and Biochemical Zoology 86(2): 266–278. doi:10.1086/669539.

    Article  CAS  Google Scholar 

  • Bray, J. Roger, and John T. Curtis. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs 27: 325–349. doi:10.2307/1942268.

    Article  Google Scholar 

  • Brown, Rana A., and Erik V. Thuesen. 2011. Biodiversity of mobile benthic fauna in geoduck (Panopea generosa) aquaculture beds in southern Puget Sound, Washington. Journal of Shellfish Research 30: 771–776. doi:10.2983/035.030.0317.

    Article  Google Scholar 

  • Burnham, Kenneth P., and David R. Anderson. 2002. Model selection and multimodel inference: a practical information-theoretic approach. New York: Springer.

    Google Scholar 

  • Carpenter, S.R., J.F. Kitchell, and J.R. Hodgson. 1985. Cascading trophic interactions and lake productivity. BioScience 35: 634–639. doi:10.2307/1309989.

    Article  Google Scholar 

  • Cesar, Christopher P., and Chris L.J. Frid. 2012. Benthic disturbance affects intertidal food web dynamics: implications for investigations of ecosystem functioning. Marine Ecology Progress Series 466: 35–41. doi:10.3354/meps09938.

    Article  Google Scholar 

  • Clarke, K.R. 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18: 117–143. doi:10.1111/j.1442-9993.1993.tb00438.x.

    Article  Google Scholar 

  • Clarke, K.R., and R.N. Gorley. 2001. PRIMERv5: User Manual/Tutorial. Plymouth: PRIMER-E.

    Google Scholar 

  • Claudino, Marlucy Coelho, Paulo César Abreu, and Alexandre Miranda Garcia. 2013. Stable isotopes reveal temporal and between-habitat changes in trophic pathways in a southwestern Atlantic estuary. Marine Ecology Progress Series 489: 29–42. doi:10.3354/meps10400.

    Article  CAS  Google Scholar 

  • Coan, Eugene V., Paul Valentich Scott, and Frank R. Bernard. 2000. Bivalve seashells of western North America: marine bivalve mollusks from Arctic Alaska to Baja California. Santa Barbara: Santa Barbara Museum of Natural History.

    Google Scholar 

  • Coleman, David C., and Brian Fry. 1991. Carbon isotope techniques. San Diego: Academic.

    Google Scholar 

  • Connell, Joseph H. 1978. Diversity in tropical rain forests and coral reefs. Science 199: 1302–1310. doi: 10.1126/science.199.4335.1302.

  • ConocoPhillips Alaska, Inc., Shell Exploration & Production, and Statoil USA E&P Inc. 2011. A synthesis of diversity, distribution, abundance, age, size and diet of fishes in the lease sale 193 area of the northeastern Chukchi Sea: final report. Anchorage.

  • Costa-Pierce, Barry A. 2002. Ecology as the paradigm for the future of aquaculture. In Ecological aquaculture: the evolution of the blue revolution, ed. Barry A. Costa-Pierce, 339–372. Oxford: Blackwell Science.

    Chapter  Google Scholar 

  • Cunjak, R.A., J.M. Roussel, M.A. Gray, J.P. Dietrich, D.F. Cartwright, K.R. Munkittrick, and T.D. Jardine. 2005. Using stable isotope analysis with telemetry or mark-recapture data to identify fish movement and foraging. Oecologia 144: 636–646. doi:10.1007/s00442-005-0101-9.

    Article  CAS  Google Scholar 

  • Daigle, Sara T., John W. Fleeger, James H. Cowan, and Pierre-Yves Pascal. 2013. What is the relative importance of phytoplankton and attached macroalgae and epiphytes to food webs on offshore oil platforms? Marine and Coastal Fisheries 5: 53–64. doi:10.1080/19425120.2013.774301.

    Article  Google Scholar 

  • de Ruiter, Peter C., Volkmar Wolters, John C. Moore, and Kirk O. Winemiller. 2005. Food web ecology: playing Jenga and beyond. Science 309: 68–71. doi:10.1126/science.1096112.

    Article  Google Scholar 

  • Dealteris, Joseph T., Brian D. Kilpatrick, and Robert B. Rheault. 2004. A comparative evaluation of the habitat value of shellfish aquaculture gear, submerged aquatic vegetation and a non-vegetated seabed. Journal of Shellfish Research 23: 867–874.

    Google Scholar 

  • Diaz, Robert J., and Rutger Rosenberg. 1995. Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanography and Marine Biology: An Annual Review 33: 245–303.

    Google Scholar 

  • Dumbauld, Brett R., Jennifer L. Ruesink, and Steven S. Rumrill. 2005. The ecological role and potential impacts of molluscan shellfish culture in the estuarine environment. Final Report to the Western Regional Aquaculture Center. Agricultural Research Service, Newport: U.S. Department of Agriculture.

    Google Scholar 

  • Dumbauld, Brett R., Jennifer L. Ruesink, and Steven S. Rumrill. 2009. The ecological role of bivalve shellfish aquaculture in the estuarine environment: a review with application to oyster and clam culture in West Coast (USA) estuaries. Aquaculture 290: 196–223. doi:10.1016/j.aquaculture.2009.02.033.

    Article  Google Scholar 

  • Erbland, Patrick J., and Gulnihal Ozbay. 2008. A comparison of the macrofaunal communities inhabiting a Crassostrea virginica oyster reef and oyster aquaculture gear in Indian River Bay, Delaware. Journal of Shellfish Research 27: 757–768. doi:10.2983/0730-8000(2008)27[757:ACOTMC]2.0.CO;2.

    Article  Google Scholar 

  • Everett, Richard A. 1991. Intertidal distribution of infauna in a central California lagoon: the role of seasonal blooms of macroalgae. Journal of Experimental Marine Biology and Ecology 150: 223–247. doi:10.1016/0022-0981(91)90069-9.

    Article  Google Scholar 

  • Ferraro, Steven P., and Faith A. Cole. 2007. Benthic macrofauna-habitat associations in Willapa Bay, Washington, USA. Estuarine, Coastal and Shelf Science 71: 491–507. doi:10.1016/j.ecss.2006.09.002.

    Article  Google Scholar 

  • Fitch, John E., and Robert J. Lavenberg. 1975. Tidepool and nearshore fishes of California. Berkeley and Los Angeles: University of California Press.

    Google Scholar 

  • France, R.L. 1995. Carbon-13 enrichment in benthic compared to planktonic algae: foodweb implications. Marine Ecology Progress Series 124: 307–312. doi:10.3354/meps124307.

    Article  Google Scholar 

  • Fry, Brian. 1988. Food web structure on Georges Bank from stable C, N and S isotopic compositions. Limnology and Oceanography 33: 1182–1190.

    Article  CAS  Google Scholar 

  • Giles, Hilke, and Conrad A. Pilditch. 2006. Effects of mussel (Perna canaliculus) biodeposit decomposition on benthic respiration and nutrient fluxes. Marine Biology 150: 261–271. doi:10.1007/s00227-006-0348-7.

    Article  CAS  Google Scholar 

  • Gillanders, B.M. 1995. Feeding ecology of the temperate marine fish Achoerodus viridis (Labridae): size, seasonal and site-specific differences. Marine and Freshwater Research 46: 1009–1020. doi:10.1071/MF9951009.

    Article  Google Scholar 

  • Goodwin, C.L., and B.C. Pease. 1991. Geoduck, Panopea abrupta (Conrad, 1849), size, density, and quality as related to various environmental parameters in Puget Sound, Washington. Journal of Shellfish Research 10: 65–77.

    Google Scholar 

  • Grassle, J. Frederick, and Howard L. Sanders. 1973. Life histories and the role of disturbance. Deep-Sea Research and Oceanographic Abstracts 20: 643–659. doi:10.1016/0011-7471(73)90032-6.

    Article  Google Scholar 

  • Gray, M.A., R.A. Cunjak, and K.R. Munkittrick. 2004. Site fidelity of slimy sculpin (Cottus cognatus): insights from stable carbon and nitrogen analysis. Canadian Journal of Fisheries and Aquatic Sciences 61: 1717–1722. doi:10.1139/f04-108.

    Article  Google Scholar 

  • Gutiérrez, Jorge L., Clive G. Jones, David L. Strayer, and Oscar O. Iribarne. 2003. Mollusks as ecosystem engineers: the role of shell production in aquatic habitats. Oikos 101: 79–90. doi:10.1034/j.1600-0706.2003.12322.x.

    Article  Google Scholar 

  • Hargrave, B.T., L.I. Doucette, P.J. Cranford, B.A. Law, and T.G. Milligan. 2008. Influence of mussel aquaculture on sediment organic enrichment in a nutrient-rich coastal embayment. Marine Ecology Progress Series 365: 137–149. doi:10.3354/meps07636.

    Article  Google Scholar 

  • Hart, John Lawson, and Wilbert Amie Clemens. 1973. Pacific fishes of Canada. Ottawa: Fisheries Research Board of Canada.

    Google Scholar 

  • Hayakawa, Y., M. Kobayashi, and M. Izawa. 2001. Sedimentation flux from mariculture of oyster (Crassostrea gigas) in Ofunato estuary, Japan. ICES Journal of Marine Science 58: 435–444. doi:10.1006/jmsc.2000.1036.

    Article  CAS  Google Scholar 

  • Hemminga, M.A., and M.A. Mateo. 1996. Stable carbon isotopes in seagrasses: variability in ratios and use in ecological studies. Marine Ecology Progress Series 140: 285–298.

    Article  Google Scholar 

  • Holsman, Kirstin K., P. Sean McDonald, and David A. Armstrong. 2006. Intertidal migration and habitat use by subadult Dungeness crab Cancer magister in a NE Pacific estuary. Marine Ecology Progress Series 308: 183–195. doi:10.3354/meps308183.

    Article  Google Scholar 

  • Holsman, Kirstin K., P. Sean McDonald, Pablo A. Barreyro, and David A. Armstrong. 2010. Restoration through eradication? Removal of an invasive bioengineer restores some habitat function for a native predator. Ecological Applications 20(8): 2249–2262.

    Article  Google Scholar 

  • Hosack, Geoffrey R., Brett R. Dumbauld, Jennifer L. Ruesink, and David A. Armstrong. 2006. Habitat associations of estuarine species: comparisons of intertidal mudflat, seagrass (Zostera marina), and oyster (Crassostrea gigas) habitats. Estuaries and Coasts 29: 1150–1160. doi:10.1007/BF02781816.

    Article  Google Scholar 

  • Howe, Emily R. 2006. Evaluating the role of restoration: an isotopic determination of food web origins in San Francisco Bay’s estuarine wetlands. Thesis: University of Washington.

    Google Scholar 

  • Jennings, S., O. Reňones, Beatriz Morales-Nin, N.V.C. Polunin, Joan Moranta, and Josep Coll. 1997. Spatial variation in the 15N and 13C stable isotope composition of plants, invertebrates and fishes on Mediterranean reefs: implications for the study of trophic pathways. Marine Ecology Progress Series 146: 109–116. doi:10.3354/meps146109.

  • Kadye, Wilbert T., and Anthony J. Booth. 2012. Integrating stomach content and stable isotope analyses to elucidate the feeding habits of non-native sharptooth catfish Clarias gariepinus. Biological Invasions 14: 779–795. doi:10.1007/s10530-011-0116-6.

    Article  Google Scholar 

  • Kruskal, Joseph B., and Myron Wish. 1978. Multidimensional scaling. Beverly Hills: Sage.

    Google Scholar 

  • Lek, E., D.V. Fairclough, M.E. Platell, K.R. Clarke, J.R. Tweedley, and I.C. Potter. 2011. To what extent are the dietary compositions of three abundant, co‐occurring labrid species different and related to latitude, habitat, body size and season? Journal of Fish Biology 78(7): 1913–1943. doi:10.1111/j.1095-8649.2011.02961.x.

    Article  CAS  Google Scholar 

  • López-Jamar, E., J. Iglesias, and J.J. Otero. 1984. Contribution of infauna and mussel-raft epifauna to demersal fish diets. Marine Ecology Progress Series 15: 13–18.

    Article  Google Scholar 

  • May, Robert McCredie. 1974. Stability and complexity in model ecosystems. Princeton: Princeton University Press.

    Google Scholar 

  • Mazerolle, Marc J. 2006. Improving data analysis in herpetology: using Akaike’s information criterion (AIC) to assess the strength of biological hypotheses. Amphibia Reptilia 27: 169–180. doi:10.1163/156853806777239922.

    Article  Google Scholar 

  • McCune, Bruce, James B. Grace, and Dean L. Urban. 2002. Analysis of ecological communities. Gleneden Beach: MjM Software Design.

    Google Scholar 

  • McDonald, P. Sean, Aaron W.E. Galloway, Kathleen C. McPeek, and Glenn R. VanBlaricom. In press. Effects of geoduck (Panopea generosa) aquaculture on resident and transient macrofauna communities of Puget Sound, Washington, USA. Journal of Shellfish Research.

  • Minagawa, Masao, and Eitaro Wada. 1984. Stepwise enrichment of 15N along food chains: further evidence and the relation between d15N and animal age. Geochimica et Cosmochimica Acta 48: 1135–1140. doi:10.1016/0016-7037(84)90204-7.

    Article  CAS  Google Scholar 

  • Newell, Roger I.E. 2004. Ecosystem influences of natural and cultivated populations of suspension-feeding bivalve molluscs: a review. Journal of Shellfish Research 23: 51–62.

    Google Scholar 

  • Newell, Roger I.E., and Evamaria W. Koch. 2007. Modeling seagrass density and distribution in response to changes in turbidity stemming from bivalve filtration and seagrass sediment stabilization. Estuaries 27: 793–806. doi:10.1007/BF02912041.

    Article  Google Scholar 

  • Paine, Robert T., Mia J. Tegner, and Edward A. Johnson. 1998. Compounded perturbations yield ecological surprises. Ecosystems 1: 535–545. doi:10.1007/s100219900049.

    Article  Google Scholar 

  • Peterson, Bruce J., and Brian Fry. 1987. Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics 18: 293–320. doi:10.1146/annurev.es.18.110187.001453.

    Article  Google Scholar 

  • Peterson, Bruce J., Robert W. Howarth, and Robert H. Garritt. 1985. Multiple stable isotopes used to trace the flow of organic matter in estuarine food webs. Science 227: 1361–1363. doi:10.1126/science.227.4692.1361.

    Article  CAS  Google Scholar 

  • Polito, Michael J., Wayne Z. Trivelpiece, Nina J. Karnovsky, Elizabeth Ng, William P. Patterson, and Steven D. Emslie. 2011. Integrating stomach content and stable isotope analyses to quantify the diets of pygoscelid penguins. PloS One 6(10): e26642. doi:10.1371/journal.pone.0026642.

    Article  CAS  Google Scholar 

  • Power, Mary E. 1992. Top-down and bottom-up forces in food webs: do plants have primacy? Ecology 73: 733–746. doi:10.2307/1940153.

    Article  Google Scholar 

  • Powers, Monica J., Charles H. Peterson, Henry C. Summerson, and Sean P. Powers. 2007. Macroalgal growth on bivalve aquaculture netting enhances nursery habitat for mobile invertebrates and juvenile fishes. Marine Ecology Progress Series 339: 109–122. doi:10.3354/meps339109.

    Article  Google Scholar 

  • Quan, Wei-min, Austin T. Humphries, Li-yan Shi, and Ya-qu Chen. 2012. Determination of trophic transfer at a created intertidal oyster (Crassostrea ariakensis) reef in the Yangtze River estuary using stable isotope analyses. Estuaries and Coasts 35: 109–120. doi:10.1007/s12237-011-9414-6.

    Article  CAS  Google Scholar 

  • Richards, Shane A. 2005. Testing ecological theory using the information-theoretic approach: examples and cautionary results. Ecology 86: 2805–2814. doi:10.1890/05-0074.

    Article  Google Scholar 

  • Sardá, R., K. Foreman, and I. Valiela. 1995. Macroinfauna of a southern New England salt marsh: seasonal dynamics and production. Marine Biology 121: 431–445. doi:10.1007/BF00349452.

    Article  Google Scholar 

  • Shaul, Warren, and Lynn Goodwin. 1982. Geodock (Panope generosa: Bivalvia) age as determined by internal growth lines in the shell. Canadian Journal of Fisheries and Aquatic Sciences 39: 632–636. doi:10.1139/f82-089.

    Article  Google Scholar 

  • Sheppard, S.K., and J.D. Harwood. 2005. Advances in molecular ecology: tracking trophic links through predator–prey food‐webs. Functional Ecology 19: 751–762. doi:10.1111/j.1365-2435.2005.01041.x.

    Article  Google Scholar 

  • Simonsen, Kristen A., and James H. Cowan. 2013. Effects of an inshore artificial reef on the trophic dynamics of three species of estuarine fish. Bulletin of Marine Science 89: 657–676. doi:10.5343/bms.2012.1013.

    Article  Google Scholar 

  • Sousa, Wayne P. 1984. The role of disturbance in natural communities. Annual Review of Ecology and Systematics 15: 353–391. doi:10.1146/annurev.es.15.110184.002033.

    Article  Google Scholar 

  • Sousa, Wayne P. 2001. Natural disturbance and the dynamics of marine benthic communities. In Marine Community Ecology, ed. Mark D. Bertness, Steven D. Gaines, and Mark E. Hay, 85–130. Sunderland: Sinauer Associates.

    Google Scholar 

  • Symonds, Matthew R.E., and Adnan Moussalli. 2011. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behavioral Ecology and Sociobiology 65: 13–21. doi:10.1007/s00265-010-1037-6.

    Article  Google Scholar 

  • Tasto, Robert N. 1975. Aspects of the biology of Pacific staghorn sculpin, Leptocottus armatus Girard, in Anaheim Bay. State of California Dept. of Fish and Game Bulletin 165: 123–136.

    Google Scholar 

  • Toft, Jason David, and Jeffery R. Cordell. 2006. Olympic Sculpture Park: results from pre-construction biological monitoring of shoreline habitats. Technical Report SAFS-UW-0601. Seattle: University of Washington.

    Google Scholar 

  • Vallina, Sergio M., and Corinne Le Quéré. 2011. Stability of complex food webs: resilience, resistance and the average interaction strength. Journal of Theoretical Biology 272(1): 160–173. doi:10.1016/j.jtbi.2010.11.043.

    Article  Google Scholar 

  • VanBlaricom, Glenn R. 1982. Experimental analyses of structural regulation in a marine sand community exposed to oceanic swell. Ecological Monographs 52: 283–305. doi:10.2307/2937332.

    Article  Google Scholar 

  • VanBlaricom, Glenn R., Jennifer L. Price, Julian D. Olden, and P. Sean McDonald. In press. Ecological effects of the harvest phase of geoduck clam (Panopea generosa Gould, 1850) aquaculture on infaunal communities in southern Puget Sound, Washington USA. Journal of Shellfish Research.

  • Vander Zanden, M.J., and Joseph B. Rasmussen. 2001. Variation in δ15N and δ13C trophic fractionation: implications for aquatic food web studies. Limnology and Oceanography 46: 2061–2066. doi:10.4319/lo.2001.46.8.2061.

    Article  CAS  Google Scholar 

  • Washington Sea Grant. 2013. Final Report: Geoduck aquaculture research program. Report to the Washington State Legislature. Washington Sea Grant Technical Report WSG-TR 13–03.

  • Wolfson, A., G. VanBlaricom, N. Davis, and G. Lewbel. 1979. The marine life of an offshore oil platform. Marine Ecology Progress Series 1: 81–89.

    Article  Google Scholar 

  • Woodin, Sarah Ann. 1981. Disturbance and community structure in a shallow water sand flat. Ecology 62: 1052–1066. doi:10.2307/1937004.

    Article  Google Scholar 

  • Wrast, Jenny L. 2008. Spatiotemporal and habitat-mediated food web dynamics in Lavaca Bay, Texas. Thesis: Texas A&M University at Corpus Christi.

    Google Scholar 

  • Zajac, Roman N., and Robert B. Whitlatch. 1982. Responses of estuarine infauna to disturbance: spatial and temporal variation of initial recolonization. Marine Ecology Progress Series 10: 1–14. doi:10.3354/meps010001.

    Article  Google Scholar 

  • Zar, Jerrold H. 2010. Biostatistical analysis, 5th ed. Upper Saddle River: Prentice Hall.

    Google Scholar 

Download references

Acknowledgments

We thank the staff and management of Taylor Shellfish Farms, Inc. and the Adams, Foss, and Rolfs families for kindly allowing access to field sites across private property. Katherine Armintrout, Kristin Connelly, Brittany Cummings, Julia Eggers, Ava Fuller, Mariko Langness, Jordan Lee, and Frank Stevick provided valuable field and laboratory support. Jeff Cordell and Megan Dethier provided crucial guidance in developing taxonomic accuracy in processing sampled small invertebrates by our research team. Research funding was provided in part by Washington Sea Grant, the National Aquaculture Research Program of the National Oceanic and Atmospheric Administration, the Washington State Departments of Ecology and Natural Resources, the Point No Point Treaty Council and the US Geological Survey (USGS). This study was performed under the auspices of University of Washington animal use protocol #2887-17. Scientific collection permits were obtained from the Washington Department of Fish and Wildlife. We thank the administrative authorities of USGS for supporting the content of this paper. The views expressed herein are those of the authors and do not necessarily reflect the views of funding agencies other than USGS. Any use of trade product or firm name is for descriptive purposes only and does not imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathleen C. McPeek.

Additional information

Communicated by Marianne Holmer

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McPeek, K.C., McDonald, P.S. & VanBlaricom, G.R. Aquaculture Disturbance Impacts the Diet but not Ecological Linkages of a Ubiquitous Predatory Fish. Estuaries and Coasts 38, 1520–1534 (2015). https://doi.org/10.1007/s12237-014-9909-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-014-9909-z

Keywords

Navigation