Skip to main content

Advertisement

Log in

Red Waters of Myrionecta rubra are Biogeochemical Hotspots for the Columbia River Estuary with Impacts on Primary/Secondary Productions and Nutrient Cycles

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

The localized impact of blooms of the mixotrophic ciliate Myrionecta rubra in the Columbia River estuary during 2007–2010 was evaluated with biogeochemical, light microscopy, physiological, and molecular data. M. rubra affected surrounding estuarine nutrient cycles, as indicated by high and low concentrations of organic nutrients and inorganic nitrogen, respectively, associated with red waters. M. rubra blooms also altered the energy transfer pattern in patches of the estuarine water that contain the ciliate by creating areas characterized by high primary production and elevated levels of fresh autochthonous particulate organic matter, therefore shifting the trophic status in emergent red water areas of the estuary from net heterotrophy towards autotrophy. The pelagic estuarine bacterial community structure was unaffected by M. rubra abundance, but red waters of the ciliate do offer a possible link between autotrophic and heterotrophic processes since they were associated with elevated dissolved organic matter and showed a tendency for enhanced microbial secondary production. Taken together, these findings suggest that M. rubra red waters are biogeochemical hotspots of the Columbia River estuary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bergman, T., G. Fahnenstiel, S. Lohrenz, D. Millie, and O. Schofield. 2004. The impacts of a recurrent resuspension event and variable phytoplankton community composition on remote sensing reflectance. Journal of Geophysical Research 109: 1–12.

    Article  Google Scholar 

  • Crawford, D.W. 1989. Mesodinium rubrum: the phytoplankter that wasn't. Marine Ecology Progress Series 58: 161–174.

    Article  Google Scholar 

  • Crawford, D.W., and T. Lindholm. 1997. Some observations on the vertical distribution and migration of the photosynthetic ciliate Mesodinium rubrum (=Myrionecta rubra) in a stratified brackish inlet. Aquatic Microbial Ecology 13: 267–274.

    Google Scholar 

  • Crawford, D.W., D.A. Purdie, A.P.M. Lockwood, and P. Weissman. 1997. Recurrent red-tides in the Southampton water estuary caused by the phototrophic ciliate Mesodinium rubrum. Estuarine, Coastal and Shelf Science 45: 799–812.

    Article  CAS  Google Scholar 

  • Dale, T. 1987. Diel vertical distribution of planktonic ciliates in Lindåspollene, Western Norway. Marine Microbial Food Webs 2: 15–28.

    Google Scholar 

  • DiTullio, G.R., M.E. Geesey, A. Leventer, and M.P. Lizotte. 2003. Algal pigment ratios in the Ross Sea: implications for CHEMTAX analysis of Southern Ocean data. In Biogeochemistry of the Ross Sea, ed. G.R. DiTullio and R.B. Dunbar, 35–51. Washington DC: American Geophysical Union.

    Chapter  Google Scholar 

  • Dugdale, R.C., F.P. Wilkerson, R.T. Barber, D. Blasco, and T.T. Packard. 1987. Changes in nutrients, pH, light penetration and heat budget by migrating photosynthetic organisms. Oceanologica Acta Special Issue 6: 103–107.

    Google Scholar 

  • Fenchel, T., and P.J. Hansen. 2006. Motile behavior of the bloom-forming ciliate Mesodinium rubrum. Marine Biological Research 2: 33–40.

    Article  Google Scholar 

  • Frey, B.E., R. Lara-Lara, and L.F. Small. 1984. Water column primary production in the Columbia River estuary. Astoria, OR: Columbia River Estuary Data Development Program. 133 pp.

    Google Scholar 

  • Goodwin, TW. 1971. Algal carotenoids. In, Aspects of Terpenoid chemistry and biochemistry, ed. T.W. Goodwin, 315–356. New York: Academic press.

  • Gordon, LI, Jennings, JC, Ross, AA, and Krest JM. 1994. A suggested protocol for continuous flow analysis of seawater nutrients (phosphate, nitrate, nitrite, and silicic acid) in the WOCE Hydrographic Program and the Joint Global Ocean Fluxes Study. WHP Office Report 91-1. Revision 1, Nov 1994.

  • Haertel, L., C. Osterberg, H. Curl, and P.K. Park. 1969. Nutrient and plankton ecology of the Columbia River estuary. Ecology 50: 962–978.

    Article  CAS  Google Scholar 

  • Hedges, J.I., and J.H. Stern. 1984. Carbon and nitrogen determinations of carbonate-containing solids. Limnology and Oceanography 29: 663–666.

    Google Scholar 

  • Herfort, L., T.D. Peterson, L.A. McCue, B.C. Crump, F.G. Prahl, A.M. Baptista, V. Campbell, R. Warnick, M. Selby, G.C. Roegner, and P. Zuber. 2011a. Myrionecta rubra population genetic diversity and its cryptophyte chloroplast specificity in recurrent red tides in the Columbia River estuary. Aquatic Microbial Ecology 62: 85–97.

    Article  Google Scholar 

  • Herfort, L., T.D. Peterson, L.A. McCue, and P. Zuber. 2011b. Protist 18S rRNA gene sequence analysis reveals multiple sources of organic matter contributing to turbidity maxima of the Columbia River estuary. Marine Ecology Progress Series 438: 19–31.

    Article  Google Scholar 

  • Herfort, L., T.D. Peterson, V. Campbell, S. Futrell, and P. Zuber. 2011c. Myrionecta rubra (Mesodinium rubrum) bloom initiation in the Columbia River estuary. Estuarine, Coastal and Shelf Science 95: 440–446.

    Article  Google Scholar 

  • Holm-Hansen, O., C.J. Lorenzen, R.W. Holmes, and J.D.H. Strickland. 1965. Fluorometric determination of chlorophyll. Journal du Conseil 30: 3.

    Article  CAS  Google Scholar 

  • Holm-Hansen, O., F.J.R. Taylor, and R.J. Barsdate. 1970. A ciliate red tide in Barrow, Alaska. Marine Biology 7: 7–46.

    Article  Google Scholar 

  • Ilmavirta, V. 1988. Phytoflagellates and their ecology in Finnish brown water lakes. Hydrobiologia 161: 255–270.

    Article  CAS  Google Scholar 

  • Jiang, H. 2011. Why does the jumping ciliate Mesodinium rubrum possess an equatorially located propulsive ciliary belt? Journal of Phytoplankton Research. doi:10.1093/plankt/fbr007.

  • Johnson, M.D., T. Tengs, D. Oldach, and D.K. Stoecker. 2006. Sequestration, performance, and functional control of cryptophyte plastidsin the ciliate Myrionecta rubra (Ciliophora). Journal of Phycology 42: 1235–1246.

    Article  CAS  Google Scholar 

  • Kirchman, D.L., R.G. Keil, M. Simon, and N.A. Welschmeyer. 1993. Biomass and production of heterotrophic bacterioplankton in the oceanic subarctic Pacific. Deep Sea Research 40: 967–988.

    Article  Google Scholar 

  • Klaveness, D. 1988. Ecology of the Cryptomonadida: a first review. In Growth and reproductive strategies of freshwater phytoplankton, ed. C. Sangren, 105–133. New York: Cambridge University Press.

    Google Scholar 

  • Kyewalyanga, M., S. Sathyendranath, and T. Platt. 2002. Effect of Mesodinium rubrum (=Myrionecta rubra) on the action and absorption spectra of phytoplankton in a coastal marine inlet. Journal of Plankton Research 24: 687–702.

    Article  CAS  Google Scholar 

  • Lane, D.J. 1991. 16S/23S rRNA sequencing. In Nucleic acid techniques in bacterial systematic, ed. E. Stackebrandt and M. Goodfellow, 115–175. New York: John Wiley and Sons press.

    Google Scholar 

  • Lara-Lara, J.R., B.E. Frey, and L.F. Small. 1990. Primary production in the Columbia River estuary. I. Spatial and temporal variability of properties. Pacific Science 44: 17–37.

    CAS  Google Scholar 

  • Lindholm, T. 1985. Mesodinium rubrum a unique ciliate. Advances in Aquatic Microbiology 3: 1–48.

    Google Scholar 

  • Lindholm, T. 1986. Mesodinium rubrum—a unique photosynthetic ciliate. In Advances in aquatic microbiology, ed. H.W. Jannasch and P.J. Williams, 1–48. London: Academic.

    Google Scholar 

  • Lozupone, C., and R. Knight. 2005. UniFrac: a new phylogenetic method for comparing microbial communities. Applied and Environmental Microbiology 71: 8228–8835.

    Article  CAS  Google Scholar 

  • Neal, V.T. 1972. Physical aspects of the Columbia River and its estuary. In The Columbia River estuary and adjacent ocean waters, ed. A.T. Pruter and D.L. Alverson, 19–40. Seattle: University of Washington Press.

    Google Scholar 

  • Packard, T., T.D. Blasko, and R.T. Barber. 1978. Mesodinium rubrum in the Baja California upwelling system. In Upwelling systems, ed. R. Boje and M. Tomczak, 73–89. Berlin: Springer.

    Chapter  Google Scholar 

  • Passow, U. 1991. Vertical migration of Gonyaulax catenata and Mesodinium rubrum. Marine Biology 110: 455–463.

  • Pinckney, J., H. Paerl, M. Harrington, and K. Howe. 1998. Annual cycles of phytoplankton community-structure and bloom dynamics in the Neuse River estuary. Marine Biology 131: 371–381.

    Article  Google Scholar 

  • Roegner, G.C., C. Seaton, and A. Baptista. 2010. Climatic and tidal forcing of hydrography and chlorophyll concentrations in the Columbia River estuary. Estuaries and Coasts. doi:10.1007/s12237-010-9340-z.

  • Roegner, G.C., J.A. Needoba, and A.M. Baptista. 2011. Coastal upwelling supplies oxygen-depleted water to the Columbia River Estuary. PLoS One 6(4): e18672. doi:10.1371/journal.pone.001867.

    Article  Google Scholar 

  • Romalde, J.L., J.L. Barja, and A.E. Toranzo. 1990. Vibrios associated with red tides caused by Mesodinium rubrum. Applied and Environmental Microbiology 56: 3615–3619.

    CAS  Google Scholar 

  • Ryther, K. 1967. The size structure of the Mesodinium rubrum population in the Gdańsk Basin. Oceanologia 46: 439–444.

    Google Scholar 

  • Sakamoto, C., G.E. Friederich, and L.A. Codispoti. 1990. MBARI procedures for automated nutrient analyses using a modified Alpkem series 300 rapid flow analyzer. MBARI Technical Report 902.

  • Santegoeds, C.M., T.G. Ferdelman, G. Muyzer, and D. de Beer. 1998. Structural and functional dynamics of sulfate-reducing populations in bacterial biofilms. Applied and Environmental Microbiology 64: 3731–3739.

    CAS  Google Scholar 

  • Simenstad, C.A., L.F. Small, and C.D. McIntire. 1990. Consumption processes and food web structure in the Columbia River Estuary. Progress in Oceanography 25: 271–297.

    Article  Google Scholar 

  • Small, L.F., C.D. McIntire, K.B. MacDonald, J.R. Lara-Lara, B.E. Frey, M.C. Amspoker, and T. Winfield. 1990. Primary production, plant and detrital biomass, and particle transport in the Columbia River estuary. Progress in Oceanography 25: 175–210.

    Article  Google Scholar 

  • Smith, D.C., and F. Azam. 1992. A simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-leucine. Marine Microbial Food Webs 6: 107–114.

    Google Scholar 

  • Smith, T.F., and M.S. Waterman. 1981. Identification of common molecular subsequences. Journal of Molecular Biology 147: 195–197.

    Google Scholar 

  • Smith, W.O., and R.T. Barber. 1979. Carbon budget for the autotrophic ciliate Mesodinium rubrum. Journal of Phycology 15: 27–33.

    Article  Google Scholar 

  • Soulsby, P.G., M. Mollowney, G. Marsh, and D. Lowthion. 1984. The role of phytoplankton in the dissolved oxygen budget of a stratified estuary. Water Science and Technology 17: 745–756.

    Google Scholar 

  • Stoecker, D.K., M. Putt, L.H. Davis, and A.E. Michaels. 1991. Photosynthesis in Mesodinium rubrum: species-specific measurements and comparison to community rates. Marine Ecology Progress Series 73: 245–252.

    Article  Google Scholar 

  • Sugima, Y., and Y. Suzuki. 1988. A high-temperature catalytic oxidation method for the determination of non-volatile dissolved organic carbon in seawater by direct injection of a liquid sample. Marine Chemistry 24: 105–131.

    Article  Google Scholar 

  • Sullivan, B.E., F.G. Prahl, L.F. Small, and P.A. Covert. 2001. Seasonality of phytoplankton production in the Columbia River: a natural or anthropogenic pattern? Geochimica et Cosmochimica Acta 65: 1125–1139.

    Article  CAS  Google Scholar 

  • Tamigneaux, E., E. Vazquez, M. Mingelbier, B. Kelein, and L. Legendre. 1995. Environmental control of phytoplankton assemblages in nearshore marine waters, with special emphasis on phototrophic ultraplankton. Journal of Plankton Research 17: 1421–1447.

    Article  Google Scholar 

  • Taylor, F.J.R. 1982. Symbioses in marine microplankton. Annales de l'Institut Oceanographique Paris, Fasc. Suppl. 58: 61–90.

    Google Scholar 

  • Taylor, F.J.R., D.J. Blackbourn, and J. Blackbourn. 1971. The red-water ciliate Mesodinium rubrum and its “incomplete symbionts”: a review including new ultrastructural observations. Journal of the Fisheries Research Board of Canada 28: 391–407.

    Article  Google Scholar 

  • Utermöhl, H. 1931. Neue wege in der quantitativen Erfassung des Planktons (mit besonderer Berucksichtigung des Ultraplanktons). Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 5: 567–596.

    Google Scholar 

  • Utermöhl, H. 1958. Zur Vervollkommnung der quantiativen Phytoplankton-Methodik. Mitteilungen der Internationale Vereinigung 9: 1–38.

    Google Scholar 

  • Valderrama, J.C. 1981. The simultaneous analysis of total nitrogen and total phosphorus in natural waters. Marine Chemistry 10: 109–122.

    Article  CAS  Google Scholar 

  • Verardo, D.J., P.N. Froelich, and A. McIntyre. 1990. Determination of organic carbon and nitrogen in marine sediments using the Carlo Erba NA-1500 analyzer. Deep-sea Research I 37: 157–165.

    Article  CAS  Google Scholar 

  • Vernet, M., E. Brody, O. Holm-Hansen, and B. Mitchell. 1994. The response of Antarctic phytoplankton to ultraviolet radiations: absorption, photosynthesis, and taxonomic composition. Antarctic Research Series 62: 143–158.

    Article  Google Scholar 

  • Wilkerson, F.P., and G. Grunseich. 1990. Formation of blooms by the symbiotic ciliate Mesodinium rubrum: the significance of nitrogen uptake. Journal of Plankton Research 12: 973–989.

    Article  Google Scholar 

  • Wright, S.W., S.W. Jeffrey, R.F.C. Mantoura, C.A. Llewellyn, T. Bjornland, D. Repeta, and N. Welschmeyer. 1991. Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton. Marine Ecology Progress Series 77: 183–196.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the captain, crew, and scientific party of the R/Vs Barnes, New Horizon and Wecoma; Pete Kahn and Sheedra Futrell (OHSU) for their help with sampling in 2010; Mikaela Selby (OHSU) for constructing some of the clone libraries; Margaret Sparrow and Tiffany Gregg (OSU) for particulate organic carbon and nitrogen and photosynthetic pigment analyses; Mari Garcia (OHSU) for the 2010 chlorophyll a measurements; Caroline Fortunato (UMCES) for the microbial secondary production analyses; Joe Jennings (OSU) for analyzing the inorganic nutrient samples of 2007–2008; our colleagues at the UMCES analytical laboratory for measuring the concentrations of dissolved organic carbon, and total dissolved nitrogen and phosphorus; Grant Law (OHSU) for plotting Fig. 4.

This study was carried out within the context of the Science and Technology Center for Coastal Margin Observation & Prediction (CMOP) supported by the National Science Foundation (grant number OCE-0424602). A portion of the research was performed with support from the Laboratory Directed Research and Development program at Pacific Northwest National Laboratory, which is operated by Battelle for the United States Department of Energy under Contract DE-AC05-76RL01830.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lydie Herfort.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Physical, biological, and chemical data used for calculating the averages presented on Figs 2, 3, and 4. POC particulate organic carbon, PN particulate nitrogen, Chla chlorophyll a, DOC dissolved organic carbon, NH4 ammonium, NO3 nitrate, DIP dissolved inorganic phosphorus, DON dissolved organic nitrogen, DOP dissolved organic phosphorus, MSP microbial secondary production, N.D. not determined (DOC 43 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herfort, L., Peterson, T.D., Prahl, F.G. et al. Red Waters of Myrionecta rubra are Biogeochemical Hotspots for the Columbia River Estuary with Impacts on Primary/Secondary Productions and Nutrient Cycles. Estuaries and Coasts 35, 878–891 (2012). https://doi.org/10.1007/s12237-012-9485-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-012-9485-z

Keywords

Navigation