Skip to main content

Advertisement

Log in

Facilities for Simulation of Microgravity in the ESA Ground-Based Facility Programme

  • ORIGINAL PAPER
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

Knowledge of the role of gravity in fundamental biological processes and, consequently, the impact of exposure to microgravity conditions provide insight into the basics of the development of life as well as enabling long-term space exploration missions. However, experimentation in real microgravity is expensive and scarcely available; thus, a variety of platforms have been developed to provide, on Earth, an experimental condition comparable to real microgravity. With the aim of simulating microgravity conditions, different ground-based facilities (GBF) have been constructed such as clinostats and random positioning machines as well as magnets for magnetic levitation. Here, we give an overview of ground-based facilities for the simulation of microgravity which were used in the frame of an ESA ground-based research programme dedicated to providing scientists access to these experimental capabilities in order to prepare their space experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adrian, A., Schoppmann, K., Sromicki, J., Brungs, S., von der Wiesche, M., Hock, B., Kolanus, W., Hemmersbach, R., Ullrich, O.: The oxidative burst reaction in mammalian cells depends on gravity. Cell. Commun. Signal 11, 98 (2013)

    Article  Google Scholar 

  • Aleshcheva, G., Bauer, J., Hemmersbach, R., Egli, M., Grimm, D.: Tissue Engineering of cartilage on ground-based facilities. Microgravity Sci. Technol. (2015). doi:10.1007/s12217-015-9479-0

  • Anken, R., Bauer, U., Hilbig, R.: Clinorotation increases the growth of utricular otoliths of developing cichlid fish. Microgravity Sci. Technol. 22(2), 151–154 (2015)

    Article  Google Scholar 

  • Anken, R., Brungs, S., Grimm, D., Knie, M., Hilbig, R., Fish inner otolith growth under real microgravity (spaceflight) and clinorotation. Microgravity Sci. Technol. (2015). doi:10.1007/s12217-015-9459-4

  • Beaugnon, E., Tournier, R.: Levitation of water and organic substances in high static magnetic fields. J. Phys. III France 1, 1423–1428 (1991a)

  • Beaugnon, E., Tournier, R.: Levitation of organic materials. Nature 349, 6309 (1991b)

  • Beaugnon, E., Fabregue, D., Billy, D., Nappa, J., Tournier, R.: Dynamics of magnetically levitated droplets. Physica B 294, 715–720 (2001)

    Article  Google Scholar 

  • Benavides Damm, T., Walther, I., Wüest, S.L., Sekler, J., Egli, M.: Cell cultivation under different gravitational loads using a novel random positioning incubator. Biotechnol. Bioeng. 111(6), 1180–1190 (2014)

    Article  Google Scholar 

  • Berry, M.V., Geim, A.K.: Of flying frogs and levitrons. Eur. J. Phys. 18, 307–313 (1997)

    Article  MathSciNet  Google Scholar 

  • Beysens, D.A., van Loon, J.J.W.A (eds.): Generation and applications of extra-terrestrial environments on earth. River Publishers, Aalborg (2015). ISBN: 978-87-93237-53-7

  • Borst, A., van Loon, J.J.W.A.: Technology and developments for the random positioning machine, RPM. Microgravity Sci. Technol. 21(4), 287–292 (2009)

    Article  Google Scholar 

  • Briegleb, W.: Some qualitative and quantitative aspects of the fast-rotating clinostat as a research tool. ASGSB Bull 5, 23–30 (1992)

    Google Scholar 

  • Brungs, S., Hauslage, J., Hilbig, R., Hemmersbach, R., Anken, R.: Effects of simulated weightlessness on fish otolith growth: clinostat versus rotating-wall vessel. Adv. Space Res. 48, 792–798 (2011)

    Article  Google Scholar 

  • Brungs, S., Kolanus, W., Hemmersbach, R.: Syk phosphorylation – a gravisensitive step in macrophage signaling. Cell Commun. Signal 13(1), 9 (2015a)

  • Brungs, S., Petrat, G., von der Wiesche, M., Anken, R., Kolanus, W., Hemmersbach, R.: Simulating parabolic flight like g-profiles on ground - a combination of centrifuge and clinostat. Microgravity Sci. Technol. (2015b). doi:10.1007/s12217-015-9458-5

  • Catherall, A.T., Eaves, L., King, P.J., Booth, R.: Floating gold in cryogenic oxygen. Nature 422, 579 (2003)

    Article  Google Scholar 

  • Denegre, J.M., Valles Jr., J.M., Lin, K., Jordan, W.B., Mowry, K.L.: Cleavage planes in frog eggs are altered by strong magnetic fields. Proc. Natl. Acad. Sci. USA 95, 14729–14732 (1998)

    Article  Google Scholar 

  • Eiermann, P., Kopp, S., Hauslage, J., Hemmersbach, R., Gerzer, R., Ivanova, K.: Adaptation of a 2-D clinostat for simulated microgravity experiments with adherent cells. Microgravity Sci. Technol. 25, 153–159 (2013)

    Article  Google Scholar 

  • Fengler, S., Spirer, I., Neef, M., Ecke, M., Hauslage, J., Hampp, R.: changes in gene expression of Arabidopsis thaliana cell cultures upon exposure to real and simulated partial-g forces. Microgravity Sci. Technol. (2015). doi:10.1007/s12217-015-9452-y

  • Fischer, J., Schoppmann, K., Knie, M., Laforsch, C.: Responses of microcrustaceans to simulated microgravity (2D-clinorotation) - preliminary assessments for the development of Bioregenerative Life Support Systems (BLSS). Microgravity Sci. Technol. (2015). doi:10.1007/s12217-015-9470-9

  • Guevorkian, K., Valles, J.M.: Swimming Paramecium in magnetically simulated enhanced, reduced, and inverted gravity environments. PNAS 103, 13051–13056 (2006)

    Article  Google Scholar 

  • Häder, D.P., Hemmersbach, R., Lebert, M.: Gravity and the Behavior of Unicellular Organisms. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  • Hansen, P.-D., Unruh, E.: TRIPLE LUX – B: Phagocytosis in mussel hemocytes. Proc. 9th Eur. Symp. Life Sciences Research in Space. 26th Annu. Int. Gravitational Physiology Meeting. Cologne, Germany, ESA SP – 585 (2005)

  • Hasenstein, K.H., van Loon, J.J.W.A.: Clinostats and other rotating systems—Design, function, and limitations. In: Beysens, D.A., van Loon, J.J.W.A (eds.) Generation and Applications of Extra-Terrestrial Environments on Earth. River Publishers, Aalborg (2015)

  • Heijna, M.C.R., Poodt, P.W.G., Tsukamoto, K, de Grip, W.J., Christianen, P.C.M., Maan, J.C., Hendrix, J.L.A., van Enckevort W.J.P., Vlieg, E.: Magnetically controlled gravity for protein crystal growth. Appl. Phys. Lett. 90, 264105 (2007)

    Article  Google Scholar 

  • Hemmersbach, R., Voormanns, R., Häder, D.P.: Graviresponses in Paramecium biaurelia under different accelerations: studies on the ground and in space. J. Exp. Biol. 199, 2199–2205 (1996)

    Google Scholar 

  • Hemmersbach, R., Simon, A., Waßer, K., Hauslage, J., Christianen, P.C.M., Albers, P.W., Lebert, M., Richter, P., Alt, W., Anken, R.: Impact of a high magnetic field on the orientation of gravitactic unicellular organisms – A critical consideration about the application of magnetic fields to mimic functional weightlessness. Astrobiology 14, 205–215 (2014)

    Article  Google Scholar 

  • Hensel, W., Sievers, A.: Effects of prolonged omnilateral gravistimulation on the ultrastructure of statocytes and on the graviresponse of roots. Planta 150, 338–346 (1980)

    Article  Google Scholar 

  • Herranz, R., Anken, R., Boonstra, J., Braun, M., Christianen, P. C., Geest, M., Hauslage, J., Hilbig, R., Hill, R., Lebert, M., Medina, F., Vagt, N., Ullrich, O., van Loon, J., Hemmersbach, R.: Ground-based facilities for simulation of microgravity: organism-specific recommendations for their use, and recommended terminology. Astrobiology 13(1), 1–17 (2013a)

  • Herranz, R., Manzano, A.I., van Loon, J.J.W.A., Christianen, P.C.M., Medina, J.F.: Proteomic signature of Arabidopsis cell cultures exposed to magnetically induced hyper- and microgravity environments. Astrobiology 13, 217–224 (2013b)

  • Hill, R.J.A., Eaves, L.: Nonaxisymmetric shapes of a magnetically levitated spinning water droplet. Phys. Rev. Lett. 101, 234501 (2008)

    Article  Google Scholar 

  • Hill, R.J.A., Larkin, O.J., Dijkstra, C.E., Manzano, A.I, de Juan, E., Davey, M.R., Anthony, P., Eaves, L., Medina, J.F., Marco, R., Herranz, R.: Effect of magnetically simulated zero-gravity and enhanced gravity on the walk of the common fruit fly. J. R. Soc. Interface 9, 1438–1449 (2012)

    Article  Google Scholar 

  • Horn, A., Ullrich, O., Huber, K., Hemmersbach, R.: PMT (photomultiplier) clinostat. Microgravity Sci. Technol. 23, 67– 71 (2011)

    Article  Google Scholar 

  • Hoson, T., Seiichiro, K., Masuda, Y., Yamashita, M.: Changes in plant growth processes under microgravity conditions simulated by a three-dimensional clinostat. Bot. Mag. Tokyo 105(1), 53–70 (1992)

    Article  Google Scholar 

  • Hoson, T., Kamisaka, S., Masuda, Y., Yamashita, M., Buchen, B.: Evaluation of the three-dimensional clinostat as a simulator of weightlessness. Planta 203(1), 187–197 (1997)

    Article  Google Scholar 

  • Ikezoe, Y., Hirota, N., Nakagawa, J., Kitazawa, K.: Making water levitate. Nature 393, 749–750 (1998)

    Article  Google Scholar 

  • Kamal, K.Y., Herranz, R., van Loon, J.J.W.A., Christianen, P.C.M., Medina, F.J.: Evaluation of simulated microgravity environments induced by diamagnetic levitation of plant cell suspension cultures. Microgravity Sci. Technol. (2015). doi:10.1007/s12217-015-9472-7

  • Leguy, C.A., Delfos, R., Mathieu, J.B.M., Pourquie, Ch.P., Krooneman, J., Westerweel, van Loon, J.J.W.A.: Fluid motion for microgravity simulations in a random positioning machine. Gravit. Space Biol. Bull. 25 (1), 36–39 (2011)

    Google Scholar 

  • Lorin, C., Hill, R.J.A., Mailfert, A.: Magnetic levitation. In: Beysens, D.A., van Loon, J.J.W.A (eds.) Generation and Applications of Extra-Terrestrial Environments on Earth. River Publishers, Aalborg (2015)

  • Manzano, A.I., van Loon, J.J.W.A., Christianen, P.C.M., Gonzalez-Rubio, J.M., Medina, J.F., Herranz, R.: Gravitational and magnetic field variations synergize to reveal subtle variations in the global transcriptional state of Arabidopsis in vitro callus cultures. BMC Genom 13, 105 (2012)

    Article  Google Scholar 

  • Manzano, A., den Toom, A., Dowson, A., Valbuena, M.A., Medina, F.J., Herranz, R., van Loon, J.J.W.A.: Progressive effects from simulated microgravity to hypergravity on cell growth and proliferation and on gene expression in the Brassicaceae family. In: 30th Annu. American Society for Gravitational and Space Research (ASGSR) Conf., Pasadena, CA, USA (2014)

  • Maret, G., Dransfeld, K.: Biomolecules and polymers in high steady magnetic fields. In: Herlach, F (ed.) Topics in Applied Physics, vol. 57: Strong and Ultrastrong Magnetic Fields and their Applications, pp 143–204. Springer, NY (1985)

  • Mesland, D.: Novel ground-based facilities for research in the effects of weight. ESA Microgravity News 9, 5–10 (1996a)

  • Mesland, D., Anton, A., Willemsen, H., van den Ende, H.: The Free Fall Machine—a ground-based facility for microgravity research in life sciences. Microgravity Sci. Technol. 9(1), 10–14 (1996b)

  • Micali, N., Engelkamp, H., van Rhee, P.G., Christianen, P.C.M., Monsù Scolaro, L., Maan, J.C.: Selection of supramolecular chirality by application of rotational and magnetic forces. Nat. Chem. 4, 201–207 (2012)

    Article  Google Scholar 

  • Moes, M.J.A., Gielen, J.C., Bleichrodt, R., van Loon, J.J.W.A., Christianen, P.C.M., Boonstra, J.: Simulation of microgravity by magnetic levitation and random positioning: effect on human A431 cell morphology. Microgravity Sci. Technol. 23, 249–261 (2011)

    Article  Google Scholar 

  • Neef, M., Denn, T., Ecke, M., Hampp, R.: Intracellular calcium decrease upon hyper gravity-treatment of Arabidopsis thaliana cell cultures. Microgravity Sci. Technol. (2015). doi:10.1007/s12217-015-9457-6

  • Newcombe, F.C.: Limitations of the clinostat as an instrument for scientific research. Science 20, 376–379 (1904)

    Article  Google Scholar 

  • Pache, C., Kühn, J., Westphal, K., Fatih Toy, M., Parent, J., Büchi, O., Franco-Obregón, A., Depeursinge, C., Egli, M.: Digital holographic microscopy real-time monitoring of cytoarchitectural alterations during simulated microgravity. J. Biomed. Opt. 15(2), 026021 (2010)

    Article  Google Scholar 

  • Pacheco-Martinez, H.A., Liao, L., Hill, R.J.A., Swift, M.R., Bowley, R.M.: Spontaneous orbiting of two spheres levitated in a vibrated liquid. Phys. Rev. Lett. 110, 154501 (2013)

    Article  Google Scholar 

  • Paulsen, K., Thiel, C., Timm, J., Schmidt, P., Huber, K., Tauber, S., Hemmersbach, R., et al.: Microgravity-induced alterations in signal transduction in cells of the immune system. Acta Astronaut 67, 1116–1125 (2010)

    Article  Google Scholar 

  • Perenboom, J.A.A.J., Maan, J.C., van Breukelen, M.R., Wiegers, S.A.J., den Ouden, A., Wulffers, C.A., van der Zande, W.J., Jongma, R.T., van der Meer, A.F.G., Redlich, B.: Developments at the high field magnet laboratory in Nijmegen. J. Low. Temp. Phys. 170, 520–530 (2013)

    Article  Google Scholar 

  • Poodt, P.W.G., Heijna, M.C.R., Tsukamoto, K, de Grip, W.J., Christianen, P.C.M., Maan, J.C., van Enckevort, W.J.P., Vlieg, E.: Suppression of convection using gradient magnetic fields during crystal growth of NiSO4 ⋅6H2O. Appl. Phys. Lett. 87, 214105 (2005)

    Article  Google Scholar 

  • Rikken, R.S.M., Nolte, R.J.M., Maan, J.C., van Hest, J.C.M., Wilson, D.A., Christianen, P.C.M.: Manipulation of micro- and nanostructure motion with magnetic fields. Soft Matter 10, 1295–1308 (2014)

    Article  Google Scholar 

  • Scano, A.: Effeti di una variazione continua del campo gravitazionale sullo svoluppo ed accrescimento di Lathyrus Odororatus. Communication presented at 6th Int. and 12th Eur. Congr. Aeronautical and Space Medicine, Rome (1963)

    Google Scholar 

  • Schüler, O., Krause, L., Görög, M., Hauslage, J., Kesseler, L., Böhmer, M., Hemmersbach, R.: ARADISH – Development of a standardized plant growth chamber for experiments in gravitational biology using ground-based facilities. Microgravity Sci. Technol. (2015). doi:10.1007/s12217-015-9454-9

    Google Scholar 

  • Shinde, V., Brungs, S., Hescheler, J., Hemmersbach, R., Sachinidis, A.: Pipette-based method to study embryoid body formation derived from mouse and human pluripotent stem cells partially recapitulating early embryonic development under simulated microgravity conditions. Microgravity Sci. Technol. (2015). doi:10.1007/s12217-015-9469-2

    Google Scholar 

  • Toy, M.F., Parent, J., Kühn, J., Egli, M., Depeursinge, C.: Dual-mode digital holographic and fluorescence microscopy for the study of morphological changes in cells under simulated microgravity. Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XVII, 7570–7573 (2010)

  • Toy, M.F., Kühn, J., Richard, S., Parent, J., Egli, M., Depeursinge, C.: Accelerated autofocusing of off-axis holograms using critical sampling. Opt. Lett. 37(24), 5094–5096 (2012a)

  • Toy, M.F., Richard, S., Kühn, J., Franco-Obregón, A., Egli, M., Depeursinge, C.: Enhanced robustness digital holographic microscopy for demanding environment of space biology. Biomed. Opt. Express 3(2), 313–326 (2012b)

  • Unruh, E., Brungs, S., Langer, S., Bornemann, G., Frett, T., Hansen, P.-D.: Comprehensive study of the influence of altered gravity on the oxidative burst of mussel (Mytilus edulis) hemocytes. Microgravity, Sci. Technol. (2015). doi:10.1007/s12217-015-9438-9

    Google Scholar 

  • Valles, J.M., Lin, K., Denegre, J.M., Mowry, K.L.: Stable magnetic field gradient levitation of Xenopus laevis: Toward low-gravity simulation. Biophys. J. 73, 1130– 1133 (1997)

    Article  Google Scholar 

  • Valles Jr., J.M., Maris, H.J., Seidel, G.M., Tang, J., Yao, W.: Magnetic levitation-based Martian and Lunar gravity simulator. Adv. Space Res. 36, 114–118 (2005)

    Article  Google Scholar 

  • Van Loon, J.J.W.A., Veldhuijzen, J.P., Kiss, J., Wood, C., van de Ende, H., Guntemann, A., Jones, D., de Jong, H., Wubbels, R.: Microgravity research starts on the ground! Apparatus for long term ground based hypo- and hypergravity studies. In: Wilson, A. (ed.) ESA SP-433, pp 415–419. ESTEC Noordwijk, the Netherlands (1999)

  • Van Loon, J.J.W.A., Folgering, E.H.T.E., Bouten, C.V.C., Veldhuijzen, J.P., Smit, T.H.: Inertial shear forces and the use of centrifuges in gravity research. What is the proper control? ASME J. Biomech. Eng. 125 (3), 342–346 (2003)

    Article  Google Scholar 

  • Van Loon, J.J.W.A.: Some history and use of the random positioning machine, RPM, in gravity related research. Adv. Space Res. 39(7), 1161–1165 (2007)

    Article  Google Scholar 

  • von Sachs, F.G.J.R.: Über Ausschliessung der geotropischen und heliotropischen Krümmungen wärend des Wachsthums. Würzburger Arbeiten 2, 209–225 (1879)

    Google Scholar 

  • Wang, H., Li, X., Krause, L., Görög, M., Schüler, O. , Hauslage, J., Hemmersbach, R., Kircher, A., Lasok, H., Haser, T., Rapp, K., Schmidt, J., Yu, X., Pasternak, T., Ausbry-Hivet, D., Tietz, O., Dovzhenko, A., Palme, L., Ditengou, F. A.: 2-D clinostat for simulated microgravity experiements with Arabidopsis seedlings. Micrograv. Sci. Technol. (2015). doi:10.1007/s12217-015-9478-1

  • Warnke, E., Kopp, S., Wehland, M., Hemmersbach, R., Bauer, J., Pietsch, J., Infanger, M., Grimm, D.: Thyroid cells exposed to simulated microgravity conditions – comparison of the fast rotating clinostat and the Random Positioning Machine. Microgravity Sci. Technol. (2015). doi:10.1007/s12217-015-9456-7

    Google Scholar 

  • Wehland, M., Warnke, E., Frett, T., Hemmersbach, R., Hauslage, J., Ma, X., Aleshcheva, G., Pietsch, J., Bauer, J., Grimm, D.: The impact of hypergravity and vibration on gene and protein expression of thyroid cells. Microgravity Sci. Technol. (2015). doi:10.1007/s12217-015-9474-5

    Google Scholar 

  • Weilert, M.A., Whitaker, D.L., Maris, H.J., Seidel, G.M.: Magnetic levitation and noncoalescence of liquid helium. Phys. Rev. Lett. 77, 4840–4843 (1996)

    Article  Google Scholar 

  • Wuest, S., Richard, S., Walther, I., Furrer, R., Anderegg, R., Sekler, J., Egli, M.: A novel microgravity simulator applicable for three-dimensional cell culturing. Microgravity Sci. Technol. 26(2), 1–12 (2014)

    Article  Google Scholar 

  • Wuest, S.L., Richard, S., Kopp, S., Grimm, D., Egli, M.: Simulated microgravity: critical review on the use of random positioning machines for mammalian cell culture. BioMed. Res. Int. (2015). doi:10.1155/2015/971474

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth Hemmersbach.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brungs, S., Egli, M., Wuest, S.L. et al. Facilities for Simulation of Microgravity in the ESA Ground-Based Facility Programme. Microgravity Sci. Technol. 28, 191–203 (2016). https://doi.org/10.1007/s12217-015-9471-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-015-9471-8

Keywords

Navigation