Skip to main content

Advertisement

Log in

Adrenomedullin is a key Protein Mediating Rotary Cell Culture System that Induces the Effects of Simulated Microgravity on Human Breast Cancer Cells

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

Microgravity or simulated microgravity promotes stem cell proliferation and inhibits differentiation. But, researchers have not yet been able to understand the underlying mechanism through which microgravity or simulated microgravity brings about stem cell proliferation and inhibition of differentiation. In this study, we investigated the effect of simulated microgravity (SMG) on MDA-MB-231 and MCF-7 human breast cancer cells using rotary cell culture system (RCCS). SMG induced a significant accumulation of these cancer cells in S phase of the cell cycle. But, compared with the static group, there was no effect on the overall growth rate of cells in the RCCS group. Furthermore, the expression of cyclin D1 was inhibited in the RCCS group, indicating that RCCS induced cell cycle arrest. In addition, RCCS also induced glycolytic metabolism by increasing the expression of adrenomedullin (ADM), but not HIF1 a. The addition of ADM further enhanced the effects of SMG, which was induced by RCCS. But, the addition of adrenomedullin antagonist (AMA) reversed these effects of SMG. Finally, our results proved that RCCS, which induced cells cycle arrest of breast cancer cells, enhanced glycolysis and upregulated the expression of ADM. But, this did not lead to an increase in hypoxia-inducible factor-1 a (HIF1 a) expression. Thus, we have uncovered a new mechanism for understanding the Warburg effect in breast cancer cells, this mechanism is not the same as hypoxia induced glycolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Boonstra, J.: Growth factor-induced signal transduction in adherent mammalian cells is sensitive to gravity. FASEB J. 13(S35), S42 (1999)

    Google Scholar 

  • Buckey, J.C.: Space Physiology. Oxford University Press (2006)

  • Chen, J., Liu, R., Yang, Y., Li, J., Zhang, X., Li, J., Wang, Z., Ma, J.: The simulated microgravity enhances the differentiation of mesenchymal stem cells into neurons. Neurosci. Lett. 505, 171–175 (2011)

    Article  Google Scholar 

  • Cogoli, A.: Signal transduction in T lymphocytes in microgravity. Gravit. Space Biol. Bull. 10, 5–16 (1997)

    Google Scholar 

  • Cristiana, G., Serena, DM., Luca, F., Cristiana, Z., Proto, P., Vittorio, T., Enzo, S.: Modification of proteins secreted by endothelial cells during modeled low gravity exposure. J. Cell Biochem. 112, 265–272 (2011)

    Article  Google Scholar 

  • Dai, Z.Q., Wang, R., Ling, S.K., Wan, Y.M., Li, Y.H.: Simulated microgravity inhibits the proliferation and osteogenesis of rat bone marrow mesenchymal stem. cells Cell Proliferation 40, 671–684 (2007)

    Article  Google Scholar 

  • Goldman, R.D., Kaplan, N.O., Hall, T.C.: Lactic dehydrogenase in human neoplastic tissues. Cancer Res. 24, 389–399 (1964)

    Google Scholar 

  • Grigoriev, A.I., Oganov, V.S., Bakulin, A.V., Poliakov, VV, Voronin, LI, Morgun, VV, Shnaider, VS, Murashko, LV, Novikov, V.E., LeBlank, A., Shakleford, L.: Clinical and physiological evaluation of bone changes among astronauts after long-term space flights. Aviakosm. Ekolog. Med. 32, 21–25 (1998)

    Google Scholar 

  • Guidolin, D., Albertin, G., Spinazzi, R., Sorato, E., Mascarin, A., Cavallo, D., Antonello, M., Ribatti, D.: Adrenomedullin stimulates angiogenic response in cultured human vascular endothelial cells: involvement of the vascular endothelial growth factor receptor 2. Peptides 29, 2013–2023 (2008)

    Article  Google Scholar 

  • Hammond, T.G., Benes, E., O’Reilly, K.C., Wolf, D.A., Linnehan, R.M., Taher, A., Kaysen, J.H., Allen, P.L., Goodwin, T.J.: Mechanical culture conditions effect gene expression: gravity-induced changes on the space shuttle. Physiol. Genomics. 2000, 163–173 (2000)

    Google Scholar 

  • Hatton, J.P., Gaubert, F., Lewis, M.L., Darsel, Y., Ohlmann, P., Cazenave, J.P., Schmitt, D.: The kinetics of translocation and cellular quantity of protein kinaseCin human leukocytes aremodified during spaceflight. FASEB J. 13, S23—S33 (1999)

    Google Scholar 

  • Kitamuro, T., Takahashi, K., Nakayama, M., Murakami, O., Hida, W., Shirato, K., Shibahara, S.: Induction of adrenomedullin during hypoxia in cultured human glioblastoma cells. J. Neurochem (2000)

  • Koukourakis, M.I., Kontomanolis, E., Giatromanolaki, A., Sivridis, E., Liberis, V.: Serum and tissue LDH levels in patients with breast/gynaecological cancer and benign diseases. Gynecol. Obstet. Invest. 67, 162–168 (2009)

    Article  Google Scholar 

  • Le, A., Cooper, C.R., Gouw, A.M., Dinavahi, R., Maitra, A., Deck, L.M., Royer, R.E., Vander, J.D.L., Semenza, G.L., Dang, C.V.: Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc. Natl. Acad. Sci. USA 107, 2037–2042 (2010)

    Article  Google Scholar 

  • Lewis, M.L., Cubano, L.A., Zhao, B., Dinh, H.K., Pabalan, J.G., Piepmeier, E.H., Bowman, P.D.: cDNA microarray reveals altered cytoskeletal gene expression in space-flown leukemic T lymphocytes (Jurkat). FASEB J. 15, 1783–1785 (2001)

    Google Scholar 

  • Liang, G.P., Su, Y.Y., Chen, J., Yang, Z.C., Liu, Y.S., Luo, X.D.: Analysis of the early adaptive response of endothelial cells to hypoxia via a long serial analysis of gene expression. Biochem. Biophys. Res. Commun. 384, 415–419 (2009)

    Article  Google Scholar 

  • Maria, E.P., Alessia, N., Claudia, D.V., Maria, G.M., Pierpaolo, C., Sara, P., Maria, R.G., Alberto, R., Enrico, G., Alessandra, C., Gennaro, C., Mariano, B., Rita, M.: Lung cancer stem cell lose their stemness default state after exposure to microgravity. Biomed. Res. Int., 470253 (2014)

  • Marín, M.I., Aguilar, E., Jayaraman, A., Polat, I.H., Martín-Bernabé, A., Bharat, R., Foguet, C., Milà, E., Papp, B., Centelles, J.J., Cascante, M.: Cancer cell metabolism as new targets for novel designed therapies. Future Med. Chem. 6, 1791–810 (2014)

    Article  Google Scholar 

  • Masiello, M.G., Cucina, A., Proietti, S., Palombo, A., Coluccia, P., D’Anselmi, F., Dinicola, S., Pasqualato, A.: Morini V.,Bizzarri M.: Phenotypic switch induced by simulated microgravity on MDA-MB-231 breast cancer cells. Biomed. Res. Int. 2014, 652434 (2014)

    Article  Google Scholar 

  • Monticone, M., Liu, Y., Pujic, N., Cancedda, R.: Activation of nervous system development genes in bone marrow derived mesenchymal stem cells following spaceflight exposure. J. Cell Biochem. 111, 442–452 (2010)

    Article  Google Scholar 

  • Park, S.J., Kim, J.G., Son, T.G.: The histone demethylase JMJD1A regulates adrenomedullin-mediated cell proliferation in hepatocellular carcinoma under hypoxia. Bioche. Biophy. Res. Com. 434, 722–727 (2013)

    Article  Google Scholar 

  • Renn, J., Seibt, D., Goerlich, R., Schartl, M., Winkler, C.: Simulated microgravity upregulates gene expression of the skeletal regulator Core binding Factor 1/Runx2 in Medaka fish larvae in vivo. Adv. Space Res. 38, 1025–1031 (2006)

    Article  Google Scholar 

  • Samanta, D., Gilkes, D.M., Chaturvedi, P.: Hypoxia-inducible factors are required for chemotherapy resistance of breast cancer stem cells. PNAS 111, E5429–38 (2014)

    Article  Google Scholar 

  • Sheng, S.L., Liu, J.J., Dai, Y.H., Sun, X.G., Xiong, X.P., Huang, G.: Knockdown of lactate dehydrogenase A suppresses tumor growth and metastasis of human hepatocellular carcinoma. FEBS J. 279, 3898–3910 (2012)

    Article  Google Scholar 

  • Sun, L., Gan, B., Fan, Y., Xie, T., Hu, Q., Zhuang, F.: Simulated microgravity alters multipotential differentiation of rat mesenchymal stem cells in association with reduced telomerase activity. Acta Astronaut. 63, 968–973 (2008)

    Article  Google Scholar 

  • Ulbrich, C., Wehland, M., Pietsch, J., Aleshcheva, G., Wise, P., Loon, J., Magnusson, N., Infanger, M., Grosse, J., Eilles, C., Sundaresan, A., Grimm, D.: The impact of simulated and real microgravity on bone cells and mesenchymal stem cells. Biomed. Res. Int., 2014928507 (2014)

  • Vorselen, D., Roos, W.H., MacKintosh, F.C., Wuite, G.J.L., van Loon, J.J.W.A.: The role of the cytoskeleton in sensing changes in gravity by nonspecialized cells. FASEB J. 28, 536–547 (2014)

    Article  Google Scholar 

  • White, R.J., Averner, M.: Humans in space. Nature 6823, 1115–1118 (2001)

    Article  Google Scholar 

  • Zhang, S., Liu, P., Chen, L., Wang, Y., Wang, Z., Zhang, Z.: The effects of spheroid formation of adipose-derived stem cells in a microgravity bioreactor on stemness properties and therapeutic potential. Biomaterials 41, 15–25 (2015)

    Article  Google Scholar 

  • Zhang, X., Li, L., Bai, Y., Shi, R., Wei, H., Zhang, S.: Mouse undifferentiated spermatogonial stem cells cultured as aggregates under simulated microgravity. Andrologia 46, 1013–1021 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants obtained from the National High Technology Research and Development Program of China (grant number: 2011CB710904 (http://www.most.gov.cn/eng/index.htm), which is carried out by National Natural Science Foundation of China (No. 81372813; http://www.nsfc.gov.cn/Portal0/default106.htm).

Conflict of interests

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangdong Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Yang, X., Cui, X. et al. Adrenomedullin is a key Protein Mediating Rotary Cell Culture System that Induces the Effects of Simulated Microgravity on Human Breast Cancer Cells. Microgravity Sci. Technol. 27, 417–426 (2015). https://doi.org/10.1007/s12217-015-9434-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-015-9434-0

Keywords

Navigation