Skip to main content
Log in

Future of Orthopaedic Sports Medicine and Soft Tissue Healing: The Important Role of Engineering

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

The practice of orthopaedic sports medicine, specifically the management of ligament and tendon injuries, will experience dramatic changes in the near future. Rapid technological advancements, especially in imaging, will greatly increase the speed and accuracy of diagnosing musculoskeletal injuries. On the contrary, effective treatment strategies will lag behind. This widening gap will offer huge opportunities for clinicians, basic scientists, and bioengineers to collaborate and work jointly on in depth basic science and bioengineering research. Together with appropriately designed clinical outcome studies, scientifically based treatment strategies can be designed in order to reduce the gap and to improve patient outcome. In this review, we will focus on the subject of orthopaedic biomechanics and its importance in the treatment of ligament and tendon injuries. We will detail the history of fundamental work done to characterize their biomechanical properties and highlight some recent advances using functional tissue engineering strategies, including the use of bioscaffolds, to improve the healing of medial collateral ligament, patellar tendon, and anterior cruciate ligament. To conclude, we will turn toward the future and highlight a few exciting areas of research as well as emphasize collaborative strategies to solve complex biological and biomechanical problems in ligaments and tendons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Abramowitch, S. D., C. D. Papageorgiou, R. E. Debski, T. D. Clineff, and S. L-Y. Woo. A biomechanical and histological evaluation of the structure and function of the healing medial collateral ligament in a goat model. Knee Surg. Sports Traumatol. Arthrosc. 11:155–162, 2003.

    Google Scholar 

  2. Abramowitch, S. D., and S. L-Y. Woo. An improved method to analyze the stress relaxation of ligaments following a finite ramp time based on the quasi-linear viscoelastic theory. J. Biomech. Eng. 126:92–97, 2004.

    Article  Google Scholar 

  3. Adachi, E., and T. Hayashi. In vitro formation of hybrid fibrils of type V collagen and type I collagen. Limited growth of type I collagen into thick fibrils by type V collagen. Connect. Tissue Res. 14:257–266, 1986.

    Article  Google Scholar 

  4. Adriani, E., P. P. Mariani, G. Maresca, and N. Santori. Healing of the patellar tendon after harvesting of its mid-third for anterior cruciate ligament reconstruction and evolution of the unclosed donor site defect. Knee Surg. Sports Traumatol. Arthrosc. 3:138–143, 1995.

    Article  Google Scholar 

  5. Agung, M., M. Ochi, S. Yanada, N. Adachi, Y. Izuta, T. Yamasaki, and K. Toda. Mobilization of bone marrow-derived mesenchymal stem cells into the injured tissues after intraarticular injection and their contribution to tissue regeneration. Knee Surg. Sports Traumatol. Arthrosc. 14:1307–1314, 2006.

    Article  Google Scholar 

  6. Ait Si Selmi, T., D. Fithian, and P. Neyret. The evolution of osteoarthritis in 103 patients with ACL reconstruction at 17 years follow-up. Knee 13:353–358, 2006.

    Article  Google Scholar 

  7. Amis, A. A., D. Dowson, V. Wright, and J. H. Miller. The derivation of elbow joint forces, and their relation to prosthesis design. J. Med. Eng. Technol. 3:229–234, 1979.

    Google Scholar 

  8. An, K. N., F. C. Hui, B. F. Morrey, R. L. Linscheid, and E. Y. Chao. Muscles across the elbow joint: a biomechanical analysis. J. Biomech. 14:659–669, 1981.

    Article  Google Scholar 

  9. Andriacchi, T. P., G. B. Andersson, R. W. Fermier, D. Stern, and J. O. Galante. A study of lower-limb mechanics during stair-climbing. J. Bone Joint Surg. Am. 62:749–757, 1980.

    Google Scholar 

  10. Andriacchi, T., A. Schultz, T. Belytschko, and J. Galante. A model for studies of mechanical interactions between the human spine and rib cage. J. Biomech. 7:497–507, 1974.

    Article  Google Scholar 

  11. Asay, J. L., A. Mundermann, and T. P. Andriacchi. Adaptive patterns of movement during stair climbing in patients with knee osteoarthritis. J. Orthop. Res. 27:325–329, 2009.

    Article  Google Scholar 

  12. Atwater, A. E. Biomechanics of overarm throwing movements and of throwing injuries. Exerc. Sport Sci. Rev. 7:43–85, 1979.

    Article  Google Scholar 

  13. Awad, H. A., G. P. Boivin, M. R. Dressler, F. N. Smith, R. G. Young, and D. L. Butler. Repair of patellar tendon injuries using a cell-collagen composite. J. Orthop. Res. 21:420–431, 2003.

    Article  Google Scholar 

  14. Batten, M. L., J. C. Hansen, and L. E. Dahners. Influence of dosage and timing of application of platelet-derived growth factor on early healing of the rat medial collateral ligament. J. Orthop. Res. 14:736–741, 1996.

    Article  Google Scholar 

  15. Beaty, J. Knee and leg: soft tissue trauma. In: OKU Orthopaedic Knowledge Update, edited by J. Beaty. Rosemont, IL: American Academy of Orthopaedic Surgeons, 1999, pp. xix, 442.

  16. Belytschko, T., R. F. Kulak, A. B. Schultz, and J. O. Galante. Finite element stress analysis of an intervertebral disc. J. Biomech. 7:277–285, 1974.

    Article  Google Scholar 

  17. Beynnon, B. D., D. Proffer, D. J. Drez, Jr., C. J. Stankewich, and R. J. Johnson. Biomechanical assessment of the healing response of the rabbit patellar tendon after removal of its central third. Am. J. Sports Med. 23:452–457, 1995.

    Article  Google Scholar 

  18. Bigliani, L. U., R. G. Pollock, L. J. Soslowsky, E. L. Flatow, R. J. Pawluk, and V. C. Mow. Tensile properties of the inferior glenohumeral ligament. J. Orthop. Res. 10:187–197, 1992.

    Article  Google Scholar 

  19. Birk, D. E. Type V collagen: heterotypic type I/V collagen interactions in the regulation of fibril assembly. Micron 32:223–237, 2001.

    Article  Google Scholar 

  20. Birk, D. E., J. M. Fitch, J. P. Babiarz, K. J. Doane, and T. F. Linsenmayer. Collagen fibrillogenesis in vitro: interaction of types I and V collagen regulates fibril diameter. J. Cell Sci. 95:649–657, 1990.

    Google Scholar 

  21. Briggs, B. T., and E. Y. Chao. The mechanical performance of the standard Hoffmann-Vidal external fixation apparatus. J. Bone Joint Surg. Am. 64:566–573, 1982.

    Google Scholar 

  22. Bruder, S. P., N. Jaiswal, and S. E. Haynesworth. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J. Cell. Biochem. 64:278–294, 1997.

    Article  Google Scholar 

  23. Burks, R. T., R. C. Haut, and R. L. Lancaster. Biomechanical and histological observations of the dog patellar tendon after removal of its central one-third. Am. J. Sports Med. 18:146–153, 1990.

    Article  Google Scholar 

  24. Buss, D. D., R. Min, M. Skyhar, B. Galinat, R. F. Warren, and T. L. Wickiewicz. Nonoperative treatment of acute anterior cruciate ligament injuries in a selected group of patients. Am. J. Sports Med. 23:160–165, 1995.

    Article  Google Scholar 

  25. Butler, D. L., N. Juncosa-Melvin, G. P. Boivin, M. T. Galloway, J. T. Shearn, C. Gooch, and H. Awad. Functional tissue engineering for tendon repair: a multidisciplinary strategy using mesenchymal stem cells, bioscaffolds, and mechanical stimulation. J. Orthop. Res. 26:1–9, 2008.

    Article  Google Scholar 

  26. Butler, D. L., F. R. Noyes, and E. S. Grood. Ligamentous restraints to anterior-posterior drawer in the human knee. A biomechanical study. J. Bone Joint Surg. Am. 62:259–270, 1980.

    Google Scholar 

  27. Caplan, A. I. Mesenchymal stem cells. J. Orthop. Res. 9:641–650, 1991.

    Article  Google Scholar 

  28. Caplan, A. I., D. Reuben, and S. E. Haynesworth. Cell-based tissue engineering therapies: the influence of whole body physiology. Adv. Drug Deliv. Rev. 33:3–14, 1998.

    Article  Google Scholar 

  29. Carter, D. R., and W. C. Hayes. The compressive behavior of bone as a two-phase porous structure. J. Bone Joint Surg. Am. 59:954–962, 1977.

    Google Scholar 

  30. Chen, C. H., W. J. Chen, C. H. Shih, and S. W. Chou. Arthroscopic anterior cruciate ligament reconstruction with periosteum-enveloping hamstring tendon graft. Knee Surg. Sports Traumatol. Arthrosc. 12:398–405, 2004.

    Google Scholar 

  31. Chen, C. H., H. W. Liu, C. L. Tsai, C. M. Yu, I. H. Lin, and G. H. Hsiue. Photoencapsulation of bone morphogenetic protein-2 and periosteal progenitor cells improve tendon graft healing in a bone tunnel. Am. J. Sports Med. 36:461–473, 2008.

    Article  Google Scholar 

  32. Ciccotti, M. G., S. J. Lombardo, B. Nonweiler, and M. Pink. Non-operative treatment of ruptures of the anterior cruciate ligament in middle-aged patients. Results after long-term follow-up. J. Bone Joint Surg. Am. 76:1315–1321, 1994.

    Google Scholar 

  33. Crowninshield, R. D., R. C. Johnston, J. G. Andrews, and R. A. Brand. A biomechanical investigation of the human hip. J. Biomech. 11:75–85, 1978.

    Article  Google Scholar 

  34. Currey, J. D. The mechanical properties of bone. Clin. Orthop. Relat. Res. 73:209–231, 1970.

    Article  Google Scholar 

  35. Dai, Y., T. D. Vaught, J. Boone, S. H. Chen, C. J. Phelps, S. Ball, J. A. Monahan, P. M. Jobst, K. J. McCreath, A. E. Lamborn, J. L. Cowell-Lucero, K. D. Wells, A. Colman, I. A. Polejaeva, and D. L. Ayares. Targeted disruption of the alpha1, 3-galactosyltransferase gene in cloned pigs. Nat. Biotechnol. 20:251–255, 2002.

    Article  Google Scholar 

  36. Danto, M. I., and S. L-Y. Woo. The mechanical properties of skeletally mature rabbit anterior cruciate ligament and patellar tendon over a range of strain rates. J. Orthop. Res. 11:58–67, 1993.

    Article  Google Scholar 

  37. De Duca, C. J., and W. J. Forrest. Force analysis of individual muscles acting simultaneously on the shoulder joint during isometric abduction. J. Biomech. 6:385–393, 1973.

    Article  Google Scholar 

  38. Discher, D., C. Dong, J. J. Fredberg, F. Guilak, D. Ingber, P. Janmey, R. D. Kamm, G. W. Schmid-Schonbein, and S. Weinbaum. Biomechanics: cell research and applications for the next decade. Ann. Biomed. Eng. 37:847–859, 2009.

    Article  Google Scholar 

  39. Duri, Z. A., P. M. Aichroth, R. Wilkins, and J. Jones. Patellar tendonitis and anterior knee pain. Am. J. Knee Surg. 12:99–108, 1999.

    Google Scholar 

  40. Elliott, D. M., P. S. Robinson, J. A. Gimbel, J. J. Sarver, J. A. Abboud, R. V. Iozzo, and L. J. Soslowsky. Effect of altered matrix proteins on quasilinear viscoelastic properties in transgenic mouse tail tendons. Ann. Biomed. Eng. 31:599–605, 2003.

    Article  Google Scholar 

  41. Evans, F. G., and R. Vincentelli. Relation of collagen fiber orientation to some mechanical properties of human cortical bone. J. Biomech. 2:63–71, 1969.

    Article  Google Scholar 

  42. Fetto, J. F., and J. L. Marshall. The natural history and diagnosis of anterior cruciate ligament insufficiency. Clin. Orthop. Relat. Res. 147:29–38, 1980.

    Google Scholar 

  43. Frank, C., D. McDonald, D. Bray, R. Bray, R. Rangayyan, D. Chimich, and N. Shrive. Collagen fibril diameters in the healing adult rabbit medial collateral ligament. Connect. Tissue Res. 27:251–263, 1992.

    Article  Google Scholar 

  44. Frank, C., D. McDonald, and N. Shrive. Collagen fibril diameters in the rabbit medial collateral ligament scar: a longer term assessment. Connect. Tissue Res. 36:261–269, 1997.

    Article  Google Scholar 

  45. Frank, C., S. L-Y. Woo, D. Amiel, F. Harwood, M. Gomez, and W. Akeson. Medial collateral ligament healing. A multidisciplinary assessment in rabbits. Am. J. Sports Med. 11:379–389, 1983.

    Article  Google Scholar 

  46. Friedmann, T. Progress toward human gene therapy. Science 244:1275–1281, 1989.

    Article  Google Scholar 

  47. Fujie, H., G. A. Livesay, S. L-Y. Woo, S. Kashiwaguchi, and G. Blomstrom. The use of a universal force-moment sensor to determine in situ forces in ligaments: a new methodology. J. Biomech. Eng. 117:1–7, 1995.

    Article  Google Scholar 

  48. Fukubayashi, T., and H. Kurosawa. The contact area and pressure distribution pattern of the knee. A study of normal and osteoarthrotic knee joints. Acta Orthop. Scand. 51:871–879, 1980.

    Google Scholar 

  49. Fung, Y. C. Stress strain history relations of soft tissues in simple elongation. In: Biomechanics: Its Foundations and Objectives, edited by Y. C. Fung, N. Perrone, and M. Anliker. Englewood Cliffs, NJ: Prentice Hall, 1972, pp. 181–207.

  50. Fung, Y. C., N. Perrone, and M. Anliker. Biomechanics, Its Foundations and Objectives. Englewood Cliffs, NJ: Prentice-Hall, pp. xiii, 641, 1972.

  51. Giphart, J. E., K. B. Shelburne, K. Anstett, J. P. Brunkhorst, J. D. Pault, S. L-Y. Woo, J. R. Steadman, and M. R. Torry. Measurement of 3D In Vivo Knee Motion Using Biplane Fluoroscopy: Investigation of Non-contact ACL Injuries. Presented at XVIth International Conference on Mechanics in Medicine and Biology, Pittsburgh, PA, 2008.

  52. Goldstein, S. A., D. L. Wilson, D. A. Sonstegard, and L. S. Matthews. The mechanical properties of human tibial trabecular bone as a function of metaphyseal location. J. Biomech. 16:965–969, 1983.

    Article  Google Scholar 

  53. Goshima, J., V. M. Goldberg, and A. I. Caplan. Osteogenic potential of culture-expanded rat marrow cells as assayed in vivo with porous calcium phosphate ceramic. Biomaterials 12:253–258, 1991.

    Article  Google Scholar 

  54. Hart, D. A., N. Nakamura, L. Marchuk, H. Hiraoka, R. Boorman, Y. Kaneda, N. G. Shrive, and C. B. Frank. Complexity of determining cause and effect in vivo after antisense gene therapy. Clin. Orthop. 379:S242–S251, 2000.

    Article  Google Scholar 

  55. Hart, R. A., S. L-Y. Woo, and P. O. Newton. Ultrastructural morphometry of anterior cruciate and medial collateral ligaments: an experimental study in rabbits. J. Orthop. Res. 10:96–103, 1992.

    Article  Google Scholar 

  56. Haut, R. C., and R. W. Little. A constitutive equation for collagen fibers. J. Biomech. 5:423–430, 1972.

    Article  Google Scholar 

  57. Haut, R. C., and A. C. Powlison. The effects of test environment and cyclic stretching on the failure properties of human patellar tendons. J. Orthop. Res. 8:532–540, 1990.

    Article  Google Scholar 

  58. Hirsch, C. The reaction of intervertebral discs to compression forces. J. Bone Joint Surg. Am. 37-A:1188–1196, 1955.

    Google Scholar 

  59. Hirsch, C., and J. Galante. Laboratory conditions for tensile tests in annulus fibrosus from human intervertebral discs. Acta Orthop. Scand. 38:148–162, 1967.

    Google Scholar 

  60. Hirshman, H. P., D. M. Daniel, and K. Miyasaka. The fate of the unoperated knee ligament injuries. In: Knee Ligaments: Structure, Function, Injury, and Repair, edited by D. M. Daniel, W. Akenson, and J. O'Connor. New York: Raven Press, 1990, pp. 481–503.

  61. Hovelius, L. Incidence of shoulder dislocation in Sweden. Clin. Orthop. Relat. Res. 166:127–131, 1982.

    Google Scholar 

  62. Huiskes, R. Stress analyses of implanted orthopaedic joint prostheses for optimal design and fixation. Acta Orthop. Belg. 46:711–727, 1980.

    Google Scholar 

  63. Indelicato, P. A. Non-operative treatment of complete tears of the medial collateral ligament of the knee. J. Bone Joint Surg. Am. 65:323–329, 1983.

    Google Scholar 

  64. Johnson, G. A., G. A. Livesay, S. L-Y. Woo, and K. R. Rajagopal. A single integral finite strain viscoelastic model of ligaments and tendons. J. Biomech. Eng. 118:221–226, 1996.

    Article  Google Scholar 

  65. Jokl, P., N. Kaplan, P. Stovell, and K. Keggi. Non-operative treatment of severe injuries to the medial and anterior cruciate ligaments of the knee. J. Bone Joint Surg. Am. 66:741–744, 1984.

    Google Scholar 

  66. Juncosa-Melvin, N., G. P. Boivin, C. Gooch, M. T. Galloway, J. R. West, M. G. Dunn, and D. L. Butler. The effect of autologous mesenchymal stem cells on the biomechanics and histology of gel-collagen sponge constructs used for rabbit patellar tendon repair. Tissue Eng. 12:369–379, 2006.

    Article  Google Scholar 

  67. Kannus, P. Long-term results of conservatively treated medial collateral ligament injuries of the knee joint. Clin. Orthop. Relat. Res. 226:103–112, 1988.

    Google Scholar 

  68. Kannus, P. Tendons—a source of major concern in competitive and recreational athletes. Scand. J. Med. Sci. Sports 7:53–54, 1997.

    Google Scholar 

  69. Kannus, P., and M. Jarvinen. Conservatively treated tears of the anterior cruciate ligament. Long-term results. J. Bone Joint Surg. Am. 69:1007–1012, 1987.

    Google Scholar 

  70. Karaoglu, S., M. B. Fisher, S. L-Y. Woo, Y. C. Fu, R. Liang, and S. D. Abramowitch. Use of a bioscaffold to improve healing of a patellar tendon defect after graft harvest for ACL reconstruction: a study in rabbits. J. Orthop. Res. 26:255–263, 2008.

    Article  Google Scholar 

  71. Kessler, M. A., H. Behrend, S. Henz, G. Stutz, A. Rukavina, and M. S. Kuster. Function, osteoarthritis and activity after ACL-rupture: 11 years follow-up results of conservative versus reconstructive treatment. Knee Surg. Sports Traumatol. Arthrosc. 16:442–448, 2008.

    Article  Google Scholar 

  72. Kimura, Y., A. Hokugo, T. Takamoto, Y. Tabata, and H. Kurosawa. Regeneration of anterior cruciate ligament by biodegradable scaffold combined with local controlled release of basic fibroblast growth factor and collagen wrapping. Tissue Eng. Part C. Methods 14:47–57, 2008.

    Article  Google Scholar 

  73. Kobayashi, D., M. Kurosaka, S. Yoshiya, and K. Mizuno. Effect of basic fibroblast growth factor on the healing of defects in the canine anterior cruciate ligament. Knee Surg. Sports Traumatol. Arthrosc. 5:189–194, 1997.

    Article  Google Scholar 

  74. Lai, W. M., and V. C. Mow. Drag-induced compression of articular cartilage during a permeation experiment. Biorheology 17:111–123, 1980.

    Google Scholar 

  75. Lam, T. C., C. B. Frank, and N. G. Shrive. Calibration characteristics of a video dimension analyser (VDA) system. J. Biomech. 25:1227–1231, 1992.

    Article  Google Scholar 

  76. Lanyon, L. E., W. G. Hampson, A. E. Goodship, and J. S. Shah. Bone deformation recorded in vivo from strain gauges attached to the human tibial shaft. Acta Orthop. Scand. 46:256–268, 1975.

    Article  Google Scholar 

  77. Laurencin, C. T., A. M. Ambrosio, M. D. Borden, and J. A. Cooper, Jr. Tissue engineering: orthopedic applications. Annu. Rev. Biomed. Eng. 1:19–46, 1999.

    Article  Google Scholar 

  78. Lee, T. Q., J. Dettling, M. D. Sandusky, and P. J. McMahon. Age related biomechanical properties of the glenoid-anterior band of the inferior glenohumeral ligament-humerus complex. Clin. Biomech. 14:471–476, 1999.

    Article  Google Scholar 

  79. Lee, J., F. L. Harwood, W. H. Akeson, and D. Amiel. Growth factor expression in healing rabbit medial collateral and anterior cruciate ligaments. Iowa Orthop. J. 18:19–25, 1998.

    Google Scholar 

  80. Lehman, C., F. Cuomo, F. J. Kummer, and J. D. Zuckerman. The incidence of full thickness rotator cuff tears in a large cadaveric population. Bull. Hosp. Jt Dis. 54:30–31, 1995.

    Google Scholar 

  81. Li, G., S. K. Van de Velde, and J. T. Bingham. Validation of a non-invasive fluoroscopic imaging technique for the measurement of dynamic knee joint motion. J. Biomech. 41:1616–1622, 2008.

    Article  Google Scholar 

  82. Liang, R., S. L-Y. Woo, T. D. Nguyen, P. C. Liu, and A. Almarza. Effects of a bioscaffold on collagen fibrillogenesis in healing medial collateral ligament in rabbits. J. Orthop. Res. 26:1098–1104, 2008.

    Article  Google Scholar 

  83. Liang, R., S. L-Y. Woo, Y. Takakura, D. K. Moon, F. Jia, and S. D. Abramowitch. Long-term effects of porcine small intestine submucosa on the healing of medial collateral ligament: a functional tissue engineering study. J. Orthop. Res. 24:811–819, 2006.

    Article  Google Scholar 

  84. Liden, M., N. Sernert, L. Rostgard-Christensen, C. Kartus, and L. Ejerhed. Osteoarthritic changes after anterior cruciate ligament reconstruction using bone-patellar tendon-bone or hamstring tendon autografts: a retrospective, 7-year radiographic and clinical follow-up study. Arthroscopy 24:899–908, 2008.

    Google Scholar 

  85. Maffulli, N. Rehabilitation of an anterior cruciate ligament. Clin. Orthop. Relat. Res. 343:253–255, 1997.

    Article  Google Scholar 

  86. Mammoto, T., R. A. Seerattan, K. D. Paulson, C. A. Leonard, R. C. Bray, and P. T. Salo. Nerve growth factor improves ligament healing. J. Orthop. Res. 26:957–964, 2008.

    Article  Google Scholar 

  87. Mansour, J. M., and V. C. Mow. The permeability of articular cartilage under compressive strain and at high pressures. J. Bone Joint Surg. Am. 58:509–516, 1976.

    Google Scholar 

  88. Marchant, J. K., R. A. Hahn, T. F. Linsenmayer, and D. E. Birk. Reduction of type V collagen using a dominant-negative strategy alters the regulation of fibrillogenesis and results in the loss of corneal-specific fibril morphology. J. Cell Biol. 135:1415–1426, 1996.

    Article  Google Scholar 

  89. Maretschek, S., A. Greiner, and T. Kissel. Electrospun biodegradable nanofiber nonwovens for controlled release of proteins. J. Control. Release 127:180–187, 2008.

    Article  Google Scholar 

  90. Markolf, K. L., J. S. Mensch, and H. C. Amstutz. Stiffness and laxity of the knee–the contributions of the supporting structures. A quantitative in vitro study. J. Bone Joint Surg. Am. 58:583–594, 1976.

    Google Scholar 

  91. Martinek, V., C. Latterman, A. Usas, S. Abramowitch, S. L-Y. Woo, F. H. Fu, and J. Huard. Enhancement of tendon-bone integration of anterior cruciate ligament grafts with bone morphogenetic protein-2 gene transfer: a histological and biomechanical study. J. Bone Joint Surg. Am. 84-A:1123–1131, 2002.

    Google Scholar 

  92. Mauck, R. L., M. A. Soltz, C. C. Wang, D. D. Wong, P. H. Chao, W. B. Valhmu, C. T. Hung, and G. A. Ateshian. Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J. Biomech. Eng. 122:252–260, 2000.

    Article  Google Scholar 

  93. Miyasaka, K. C., D. M. Daniel, M. L. Stone, et al. The incidence of knee ligament injuries in the general population. Am. J. Knee Surg. 4:3–8, 1991.

    Google Scholar 

  94. Moffat, K. L., I. N. Wang, S. A. Rodeo, and H. H. Lu. Orthopedic interface tissue engineering for the biological fixation of soft tissue grafts. Clin. Sports Med. 28:157–176, 2009.

    Article  Google Scholar 

  95. Moon, D. K., S. D. Abramowitch, and S. L-Y. Woo. The development and validation of a charge-coupled device laser reflectance system to measure the complex cross-sectional shape and area of soft tissues. J. Biomech. 39:3071–3075, 2006.

    Article  Google Scholar 

  96. Moon, D. K., S. L-Y. Woo, Y. Takakura, M. T. Gabriel, and S. D. Abramowitch. The effects of refreezing on the viscoelastic and tensile properties of ligaments. J. Biomech. 39:1153–1157, 2006.

    Article  Google Scholar 

  97. Mow, V. C., S. C. Kuei, W. M. Lai, and C. G. Armstrong. Biphasic creep and stress relaxation of articular cartilage in compression? Theory and experiments. J. Biomech. Eng. 102:73–84, 1980.

    Article  Google Scholar 

  98. Mow, V. C., and W. M. Lai. Some surface characteristics of articular cartilage. I. A scanning electron microscopy study and a theoretical model for the dynamic interaction of synovial fluid and articular cartilage. J. Biomech. 7:449–456, 1974.

    Article  Google Scholar 

  99. Murray, M. M. Current status and potential of primary ACL repair. Clin. Sports Med. 28:51–61, 2009.

    Article  Google Scholar 

  100. Murray, M. M., M. Palmer, E. Abreu, K. P. Spindler, D. Zurakowski, and B. C. Fleming. Platelet-rich plasma alone is not sufficient to enhance suture repair of the ACL in skeletally immature animals: an in vivo study. J. Orthop. Res. 27:639–645, 2009.

    Article  Google Scholar 

  101. Murray, M. M., K. P. Spindler, E. Abreu, J. A. Muller, A. Nedder, M. Kelly, J. Frino, D. Zurakowski, M. Valenza, B. D. Snyder, and S. A. Connolly. Collagen-platelet rich plasma hydrogel enhances primary repair of the porcine anterior cruciate ligament. J. Orthop. Res. 25:81–91, 2007.

    Article  Google Scholar 

  102. Murray, M. M., K. P. Spindler, C. Devin, B. S. Snyder, J. Muller, M. Takahashi, P. Ballard, L. B. Nanney, and D. Zurakowski. Use of a collagen-platelet rich plasma scaffold to stimulate healing of a central defect in the canine ACL. J. Orthop. Res. 24:820–830, 2006.

    Article  Google Scholar 

  103. Musahl, V., S. D. Abramowitch, T. W. Gilbert, E. Tsuda, J. H. Wang, S. F. Badylak, and S. L-Y. Woo. The use of porcine small intestinal submucosa to enhance the healing of the medial collateral ligament—a functional tissue engineering study in rabbits. J. Orthop. Res. 22:214–220, 2004.

    Article  Google Scholar 

  104. Nachemson, A. L., A. B. Schultz, and M. H. Berkson. Mechanical properties of human lumbar spine motion segments. Influence of age, sex, disc level, and degeneration. Spine 4:1–8, 1979.

    Article  Google Scholar 

  105. Nagineni, C. N., D. Amiel, M. H. Green, M. Berchuck, and W. H. Akeson. Characterization of the intrinsic properties of the anterior cruciate and medial collateral ligament cells: an in vitro cell culture study. J. Orthop. Res. 10:465–475, 1992.

    Article  Google Scholar 

  106. Nakamura, N., D. A. Hart, R. S. Boorman, Y. Kaneda, N. G. Shrive, L. L. Marchuk, K. Shino, T. Ochi, and C. B. Frank. Decorin antisense gene therapy improves functional healing of early rabbit ligament scar with enhanced collagen fibrillogenesis in vivo. J. Orthop. Res. 18:517–523, 2000.

    Article  Google Scholar 

  107. Neuman, P., I. Kostogiannis, T. Friden, H. Roos, L. E. Dahlberg, and M. Englund. Patellofemoral osteoarthritis 15 years after anterior cruciate ligament injury—a prospective cohort study. Osteoarthritis Cartilage 17:284–290, 2009.

    Article  Google Scholar 

  108. Nguyen, T. D., R. Liang, S. L-Y. Woo, S. D. Burton, C. Wu, A. Almarza, M. S. Sacks, and S. Abramowitch. Effects of cell seeding and cyclic stretch on the fiber remodeling in an extracellular matrix-derived bioscaffold. Tissue Eng. Part A 15:957–963, 2009.

    Article  Google Scholar 

  109. Niyibizi, C., K. Kavalkovich, T. Yamaji, and S. L-Y. Woo. Type V collagen is increased during rabbit medial collateral ligament healing. Knee Surg. Sports Traumatol. Arthrosc. 8:281–285, 2000.

    Article  Google Scholar 

  110. Noyes, F. R., J. L. DeLucas, and P. J. Torvik. Biomechanics of anterior cruciate ligament failure: an analysis of strain-rate sensitivity and mechanisms of failure in primates. J. Bone Joint Surg. Am. 56:236–253, 1974.

    Google Scholar 

  111. Noyes, F. R., and E. S. Grood. The strength of the anterior cruciate ligament in humans and Rhesus monkeys. J. Bone Joint Surg. Am. 58:1074–1082, 1976.

    Google Scholar 

  112. Noyes, F. R., P. A. Mooar, D. S. Matthews, and D. L. Butler. The symptomatic anterior cruciate-deficient knee. Part I: the long-term functional disability in athletically active individuals. J. Bone Joint Surg. Am. 65:154–162, 1983.

    Google Scholar 

  113. Pandey, A., and M. Mann. Proteomics to study genes and genomes. Nature 405:837–846, 2000.

    Article  Google Scholar 

  114. Peterson, R. H., and S. L-Y. Woo. A new methodology to determine the mechanical properties of ligaments at high strain rates. J. Biomech. Eng. 108:365–367, 1986.

    Article  Google Scholar 

  115. Phelps, C. J., C. Koike, T. D. Vaught, J. Boone, K. D. Wells, S. H. Chen, S. Ball, S. M. Specht, I. A. Polejaeva, J. A. Monahan, P. M. Jobst, S. B. Sharma, A. E. Lamborn, A. S. Garst, M. Moore, A. J. Demetris, W. A. Rudert, R. Bottino, S. Bertera, M. Trucco, T. E. Starzl, Y. Dai, and D. L. Ayares. Production of alpha 1, 3-galactosyltransferase-deficient pigs. Science 299:411–414, 2003.

    Article  Google Scholar 

  116. Polejaeva, I. A., S. H. Chen, T. D. Vaught, R. L. Page, J. Mullins, S. Ball, Y. Dai, J. Boone, S. Walker, D. L. Ayares, A. Colman, and K. H. Campbell. Cloned pigs produced by nuclear transfer from adult somatic cells. Nature 407:86–90, 2000.

    Article  Google Scholar 

  117. Pugh, J. W., R. M. Rose, and E. L. Radin. A structural model for the mechanical behavior of trabecular bone. J. Biomech. 6:657–670, 1973.

    Article  Google Scholar 

  118. Quapp, K. M., and J. A. Weiss. Material characterization of human medial collateral ligament. J. Biomech. Eng. 120:757–763, 1998.

    Article  Google Scholar 

  119. Radin, E. L., H. G. Parker, J. W. Pugh, R. S. Steinberg, I. L. Paul, and R. M. Rose. Response of joints to impact loading. 3. Relationship between trabecular microfractures and cartilage degeneration. J. Biomech. 6:51–57, 1973.

    Article  Google Scholar 

  120. Rodeo, S. A., S. Kawamura, H. J. Kim, C. Dynybil, and L. Ying. Tendon healing in a bone tunnel differs at the tunnel entrance versus the tunnel exit: an effect of graft-tunnel motion? Am. J. Sports Med. 34:1790–1800, 2006.

    Article  Google Scholar 

  121. Rodeo, S. A., K. Suzuki, X. H. Deng, J. Wozney, and R. F. Warren. Use of recombinant human bone morphogenetic protein-2 to enhance tendon healing in a bone tunnel. Am. J. Sports Med. 27:476–488, 1999.

    Google Scholar 

  122. Rydell, N. Biomechanics of the hip-joint. Clin. Orthop. Relat. Res. 92:6–15, 1973.

    Article  Google Scholar 

  123. Sachs, R. A., D. M. Daniel, M. L. Stone, and R. F. Garfein. Patellofemoral problems after anterior cruciate ligament reconstruction. Am. J. Sports Med. 17:760–765, 1989.

    Article  Google Scholar 

  124. Saha, A. K. Dynamic stability of the glenohumeral joint. Acta Orthop. Scand. 42:491–505, 1971.

    Article  MathSciNet  Google Scholar 

  125. Saiki, R. K., D. H. Gelfand, S. Stoffel, S. J. Scharf, R. Higuchi, G. T. Horn, K. B. Mullis, and H. A. Erlich. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491, 1988.

    Article  Google Scholar 

  126. Salmon, L. J., V. J. Russell, K. Refshauge, D. Kader, C. Connolly, J. Linklater, and L. A. Pinczewski. Long-term outcome of endoscopic anterior cruciate ligament reconstruction with patellar tendon autograft: minimum 13-year review. Am. J. Sports Med. 34:721–732, 2006.

    Article  Google Scholar 

  127. Scheffler, S. U., T. D. Clineff, C. D. Papageorgiou, R. E. Debski, C. Benjamin, and S. L-Y. Woo. Structure and function of the healing medial collateral ligament in a goat model. Ann. Biomed. Eng. 29:173–180, 2001.

    Article  Google Scholar 

  128. Shearn, J. T., N. Juncosa-Melvin, G. P. Boivin, M. T. Galloway, W. Goodwin, C. Gooch, M. G. Dunn, and D. L. Butler. Mechanical stimulation of tendon tissue engineered constructs: effects on construct stiffness, repair biomechanics, and their correlation. J. Biomech. Eng. 129:848–854, 2007.

    Article  Google Scholar 

  129. Sher, J. S., J. W. Uribe, A. Posada, B. J. Murphy, and M. B. Zlatkin. Abnormal findings on magnetic resonance images of asymptomatic shoulders. J. Bone Joint Surg. Am. 77:10–15, 1995.

    Google Scholar 

  130. Shrive, N. G., J. J. O’Connor, and J. W. Goodfellow. Load-bearing in the knee joint. Clin. Orthop. Relat. Res. 131:279–287, 1978.

    Google Scholar 

  131. Simon, S. R., E. L. Radin, I. L. Paul, and R. M. Rose. The response of joints to impact loading. II. In vivo behavior of subchondral bone. J. Biomech. 5:267–272, 1972.

    Article  Google Scholar 

  132. Smutz, W. P., M. Drexler, L. J. Berglund, E. Growney, and K. N. An. Accuracy of a video strain measurement system. J. Biomech. 29:813–817, 1996.

    Article  Google Scholar 

  133. Spalazzi, J. P., E. Dagher, S. B. Doty, X. E. Guo, S. A. Rodeo, and H. H. Lu. In vivo evaluation of a multiphased scaffold designed for orthopaedic interface tissue engineering and soft tissue-to-bone integration. J. Biomed. Mater. Res. A 86:1–12, 2008.

    Google Scholar 

  134. Spindler, K. P., J. M. Dawson, G. C. Stahlman, J. M. Davidson, and L. B. Nanney. Collagen expression and biomechanical response to human recombinant transforming growth factor beta (rhTGF-beta2) in the healing rabbit MCL. J. Orthop. Res. 20:318–324, 2002.

    Article  Google Scholar 

  135. Spindler, K. P., M. M. Murray, K. B. Detwiler, J. T. Tarter, J. M. Dawson, L. B. Nanney, and J. M. Davidson. The biomechanical response to doses of TGF-beta 2 in the healing rabbit medial collateral ligament. J. Orthop. Res. 21:245–249, 2003.

    Article  Google Scholar 

  136. Stauffer, R. N., E. Y. Chao, and R. C. Brewster. Force and motion analysis of the normal, diseased, and prosthetic ankle joint. Clin. Orthop. Relat. Res. 127:189–196, 1977.

    Google Scholar 

  137. Sutherland, D. H., L. Cooper, and D. Daniel. The role of the ankle plantar flexors in normal walking. J. Bone Joint Surg. Am. 62:354–363, 1980.

    Google Scholar 

  138. Tashiro, T., H. Hiraoka, Y. Ikeda, T. Ohnuki, R. Suzuki, T. Ochi, K. Nakamura, and N. Fukui. Effect of GDF-5 on ligament healing. J. Orthop. Res. 24:71–79, 2006.

    Article  Google Scholar 

  139. Tashman, S., P. Kolowich, D. Collon, K. Anderson, and W. Anderst. Dynamic function of the ACL-reconstructed knee during running. Clin. Orthop. Relat. Res. 454:66–73, 2007.

    Article  Google Scholar 

  140. Thomopoulos, S., G. R. Williams, J. A. Gimbel, M. Favata, and L. J. Soslowsky. Variation of biomechanical, structural, and compositional properties along the tendon to bone insertion site. J. Orthop. Res. 21:413–419, 2003.

    Article  Google Scholar 

  141. Tohyama, H., K. Yasuda, Y. Kitamura, E. Yamamoto, and K. Hayashi. The changes in mechanical properties of regenerated and residual tissues in the patellar tendon after removal of its central portion. Clin. Biomech. 18:765–772, 2003.

    Article  Google Scholar 

  142. Torzilli, P. A., and V. C. Mow. On the fundamental fluid transport mechanisms through normal and pathological articular cartilage during function. I. The formulation. J. Biomech. 9:541–552, 1976.

    Article  Google Scholar 

  143. Turkel, S. J., M. W. Panio, J. L. Marshall, and F. G. Girgis. Stabilizing mechanisms preventing anterior dislocation of the glenohumeral joint. J. Bone Joint Surg. Am. 63:1208–1217, 1981.

    Google Scholar 

  144. United States Census Bureau. 2000. United States Census 2000.

  145. Venter, J. C., M. D. Adams, E. W. Myers, P. W. Li, R. J. Mural, G. G. Sutton, H. O. Smith, M. Yandell, C. A. Evans, et al. The sequence of the human genome. Science 291:1304–1351, 2001.

    Article  Google Scholar 

  146. Vercillo, F., S. L-Y. Woo, S. Y. Noorani, and O. Dede. Determination of a safe range of knee flexion angles for fixation of the grafts in double-bundle anterior cruciate ligament reconstruction: a human cadaveric study. Am. J. Sports Med. 35:1513–1520, 2007.

    Article  Google Scholar 

  147. Viidik, A. Mechanical properties of parallel-fibered collagenous tissues. In: Biology of Collagen, edited by A. Viidik and J. Vuust. London: Academic Press, 1980, pp. 237–255.

  148. Von Porat, A., E. M. Roos, and H. Roos. High prevalence of osteoarthritis 14 years after an anterior cruciate ligament tear in male soccer players: a study of radiographic and patient relevant outcomes. Ann. Rheum. Dis. 63:269–273, 2004.

    Article  Google Scholar 

  149. Warren, L. A., J. L. Marshall, and F. Girgis. The prime static stabilizer of the medical side of the knee. J. Bone Joint Surg. Am. 56:665–674, 1974.

    Google Scholar 

  150. Watanabe, N., S. L-Y. Woo, C. Papageorgiou, C. Celechovsky, and S. Takai. Fate of donor bone marrow cells in medial collateral ligament after simulated autologous transplantation. Microsc. Res. Tech. 58:39–44, 2002.

    Article  Google Scholar 

  151. Waterston, R. H., K. Lindblad-Toh, E. Birney, J. Rogers, J. F. Abril, P. Agarwal, R. Agarwala, R. Ainscough, M. Alexandersson, et al. Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562, 2002.

    Article  Google Scholar 

  152. Weiss, J. A., S. L-Y. Woo, K. J. Ohland, S. Horibe, and P. O. Newton. Evaluation of a new injury model to study medial collateral ligament healing: primary repair versus nonoperative treatment. J. Orthop. Res. 9:516–528, 1991.

    Article  Google Scholar 

  153. Wiig, M. E., D. Amiel, J. Van de Berg, L. Kitabayashi, F. L. Harwood, and K. E. Arfors. The early effect of high molecular weight hyaluronan (hyaluronic acid) on anterior cruciate ligament healing: an experimental study in rabbits. J. Orthop. Res. 8:425–434, 1990.

    Article  Google Scholar 

  154. Wirth, C. R., C. J. Campbell, M. J. Askew, and V. C. Mow. Biomechanics of compression plating. Surg. Forum 24:470–471, 1973.

    Google Scholar 

  155. Wismans, J., F. Veldpaus, J. Janssen, A. Huson, and P. Struben. A three-dimensional mathematical model of the knee-joint. J. Biomech. 13:677–685, 1980.

    Article  Google Scholar 

  156. Witte, F., J. Fischer, J. Nellesen, H. A. Crostack, V. Kaese, A. Pisch, F. Beckmann, and H. Windhagen. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials 27:1013–1018, 2006.

    Article  Google Scholar 

  157. Witte, F., H. Ulrich, C. Palm, and E. Willbold. Biodegradable magnesium scaffolds. Part II: peri-implant bone remodeling. J. Biomed. Mater. Res. A 81:757–765, 2007.

    Google Scholar 

  158. Woo, S. L-Y. Mechanical properties of tendons and ligaments. I. Quasi-static and nonlinear viscoelastic properties. Biorheology 19:385–396, 1982.

    Google Scholar 

  159. Woo, S. L-Y., S. D. Abramowitch, R. Kilger, and R. Liang. Biomechanics of knee ligaments: injury, healing, and repair. J. Biomech. 39:1–20, 2006.

    Article  Google Scholar 

  160. Woo, S. L-Y., W. H. Akeson, and G. F. Jemmott. Measurements of nonhomogeneous, directional mechanical properties of articular cartilage in tension. J. Biomech. 9:785–791, 1976.

    Article  Google Scholar 

  161. Woo, S. L-Y., M. I. Danto, K. J. Ohland, T. Q. Lee, and P. O. Newton. The use of a laser micrometer system to determine the cross-sectional shape and area of ligaments: a comparative study with two existing methods. J. Biomech. Eng. 112:426–431, 1990.

    Article  Google Scholar 

  162. Woo, S. L-Y., R. E. Debski, E. K. Wong, M. Yagi, and D. Tarinelli. Use of robotic technology for diathrodial joint research. J. Sci. Med. Sport 2:283–297, 1999.

    Article  Google Scholar 

  163. Woo, S. L-Y., M. A. Gomez, and W. H. Akeson. The time and history-dependent viscoelastic properties of the canine medical collateral ligament. J. Biomech. Eng. 103:293–298, 1981.

    Article  Google Scholar 

  164. Woo, S. L-Y., M. A. Gomez, Y. Seguchi, C. M. Endo, and W. H. Akeson. Measurement of mechanical properties of ligament substance from a bone-ligament-bone preparation. J. Orthop. Res. 1:22–29, 1983.

    Article  Google Scholar 

  165. Woo, S. L-Y., M. A. Gomez, T. J. Sites, P. O. Newton, C. A. Orlando, and W. H. Akeson. The biomechanical and morphological changes in the medial collateral ligament of the rabbit after immobilization and remobilization. J. Bone Joint Surg. Am. 69:1200–1211, 1987.

    Google Scholar 

  166. Woo, S. L-Y., M. A. Gomez, Y. K. Woo, and W. H. Akeson. Mechanical properties of tendons and ligaments. II. The relationships of immobilization and exercise on tissue remodeling. Biorheology 19:397–408, 1982.

    Google Scholar 

  167. Woo, S. L-Y., J. M. Hollis, D. J. Adams, R. M. Lyon, and S. Takai. Tensile properties of the human femur-anterior cruciate ligament-tibia complex. The effects of specimen age and orientation. Am. J. Sports Med. 19:217–225, 1991.

    Article  Google Scholar 

  168. Woo, S. L-Y., M. Inoue, E. McGurk-Burleson, and M. A. Gomez. Treatment of the medial collateral ligament injury. II: Structure and function of canine knees in response to differing treatment regimens. Am. J. Sports Med. 15:22–29, 1987.

    Article  Google Scholar 

  169. Woo, S. L-Y., G. A. Johnson, and B. A. Smith. Mathematical modeling of ligaments and tendons. J. Biomech. Eng. 115:468–473, 1993.

    Article  Google Scholar 

  170. Woo, S. L-Y., S. C. Kuei, D. Amiel, M. A. Gomez, W. C. Hayes, F. C. White, and W. H. Akeson. The effect of prolonged physical training on the properties of long bone: a study of Wolff’s Law. J. Bone Joint Surg. Am. 63:780–787, 1981.

    Google Scholar 

  171. Woo, S. L-Y., T. Q. Lee, M. A. Gomez, S. Sato, and F. P. Field. Temperature dependent behavior of the canine medial collateral ligament. J. Biomech. Eng. 109:68–71, 1987.

    Article  Google Scholar 

  172. Woo, S. L-Y., J. V. Matthews, W. H. Akeson, D. Amiel, and F. R. Convery. Connective tissue response to immobility. Correlative study of biomechanical and biochemical measurements of normal and immobilized rabbit knees. Arthritis Rheum. 18:257–264, 1975.

    Article  Google Scholar 

  173. Woo, S. L-Y., K. J. Ohland, and J. A. Weiss. Aging and sex-related changes in the biomechanical properties of the rabbit medial collateral ligament. Mech. Ageing Dev. 56:129–142, 1990.

    Article  Google Scholar 

  174. Woo, S. L-Y., C. A. Orlando, J. F. Camp, and W. H. Akeson. Effects of postmortem storage by freezing on ligament tensile behavior. J. Biomech. 19:399–404, 1986.

    Article  Google Scholar 

  175. Woo, S. L-Y., C. A. Orlando, M. A. Gomez, C. B. Frank, and W. H. Akeson. Tensile properties of the medial collateral ligament as a function of age. J. Orthop. Res. 4:133–141, 1986.

    Article  Google Scholar 

  176. Woo, S. L-Y., R. H. Peterson, K. J. Ohland, T. J. Sites, and M. I. Danto. The effects of strain rate on the properties of the medial collateral ligament in skeletally immature and mature rabbits: a biomechanical and histological study. J. Orthop. Res. 8:712–721, 1990.

    Article  Google Scholar 

  177. Woo, S. L-Y., P. Renstrom, and S. P. Arnoczky (eds) Tendinopathy in Athletes. London: Blackwell Publishing, 2007.

  178. Woo, S. L-Y., M. A. Ritter, D. Amiel, T. M. Sanders, M. A. Gomez, S. C. Kuei, S. R. Garfin, and W. H. Akeson. The biomechanical and biochemical properties of swine tendons–long term effects of exercise on the digital extensors. Connect. Tissue Res. 7:177–183, 1980.

    Article  Google Scholar 

  179. Woo, S. L-Y., B. R. Simon, W. H. Akeson, and M. P. McCarty. An interdisciplinary approach to evaluate the effect of internal fixation plate on long bone remodeling. J. Biomech. 10:87–95, 1977.

    Article  Google Scholar 

  180. Woo, S. L-Y., B. R. Simon, S. C. Kuei, and W. H. Akeson. Quasi-linear viscoelastic properties of normal articular cartilage. J. Biomech. Eng. 102:85–90, 1980.

    Article  Google Scholar 

  181. Woo, S. L-Y., D. W. Smith, K. A. Hildebrand, J. A. Zeminski, and L. A. Johnson. Engineering the healing of the rabbit medial collateral ligament. Med. Biol. Eng. Comput. 36:359–364, 1998.

    Article  Google Scholar 

  182. Woo, S. L-Y., Y. Takakura, R. Liang, F. Jia, and D. K. Moon. Treatment with bioscaffold enhances the fibril morphology and the collagen composition of healing medial collateral ligament in rabbits. Tissue Eng. 12:159–166, 2006.

    Article  Google Scholar 

  183. Yamaji, T., R. E. Levine, S. L-Y. Woo, C. Niyibizi, K. W. Kavalkovich, and C. M. Weaver-Green. Medial collateral ligament healing one year after a concurrent medial collateral ligament and anterior cruciate ligament injury: an interdisciplinary study in rabbits. J. Orthop. Res. 14:223–227, 1996.

    Article  Google Scholar 

  184. Yasuda, K., F. Tomita, S. Yamazaki, A. Minami, and H. Tohyama. The effect of growth factors on biomechanical properties of the bone-patellar tendon-bone graft after anterior cruciate ligament reconstruction: a canine model study. Am. J. Sports Med. 32:870–880, 2004.

    Article  Google Scholar 

  185. Yin, F. C., W. R. Tompkins, K. L. Peterson, and M. Intaglietta. A video-dimension analyzer. IEEE Trans. Biomed. Eng. 19:376–381, 1972.

    Article  Google Scholar 

  186. Young, R. G., D. L. Butler, W. Weber, A. I. Caplan, S. L. Gordon, and D. J. Fink. Use of mesenchymal stem cells in a collagen matrix for Achilles tendon repair. J. Orthop. Res. 16:406–413, 1998.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support provided by the National Institute of Health (AR41820 and AR39683) and National Science Foundation (Engineering Research Center, #0812348). We also wish to acknowledge the research contributions of past and present members of the Musculoskeletal Research Center as well as our collaborators, Dr. Michael Torry and Dr. Richard Steadman, of the Steadman-Hawkins Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savio L-Y. Woo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woo, S.LY., Liang, R. & Fisher, M.B. Future of Orthopaedic Sports Medicine and Soft Tissue Healing: The Important Role of Engineering. Cel. Mol. Bioeng. 2, 448–461 (2009). https://doi.org/10.1007/s12195-009-0065-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-009-0065-7

Keywords

Navigation