Skip to main content

Orthopedic Research in the Year 2025

  • Reference work entry
  • First Online:
Sports Injuries

Abstract

By the year 2025, it is anticipated that advancements in telemedicine and imaging technologies will significantly enhance the diagnostic aspect of medicine. However, effective treatment of diseases will continue to lag as it is much more challenging and slower to develop. As such, there will be immense opportunities for scientific and clinical investigators to reduce the gap between diagnosis and treatment. In this chapter, the history of the practice of orthopedic surgery will be reviewed to show how fundamental research had helped surgeons and rehabilitation technologists in sports medicine to improve clinical management of patients. Then, a number of examples will be given to illustrate those current advances made for healing of ligaments and tendons. Discussion will focus on functional tissue engineering using both biological and mechanical augmentation, demonstrated by the latest development of biodegradable metallic materials. Finally, key areas of research will be identified, including stem cell biology and its clinical applications, molecular and other imaging modalities, and cellular and molecular biomechanics, as well as traditional tissue and joint biomechanics. As scientific research is becoming more complex as well as multidisciplinary, it will be suggested how the research laboratories need to be organized so that collaborative work can be done effectively to overcome the challenges ahead.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • AAOS (2008) In United States bone and joint decade: the burden of musculoskeletal diseases in the United States. American Academy of Orthopaedic Surgeons, Rosemont

    Google Scholar 

  • Abramowitch SD, Papageorgiou CD, Withrow JD, Gilbert TW, Woo SL-Y (2003) The effect of initial graft tension on the biomechanical properties of a healing ACL replacement graft: a study in goats. J Orthop Res 21:708–715

    Article  Google Scholar 

  • Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105:1815–1822

    Article  CAS  Google Scholar 

  • Arnoczky SP, Lavagnino M, Egerbacher M (2007) The mechanobiological aetiopathogenesis of tendinopathy: is it the over-stimulation or the under-stimulation of tendon cells? Int J Exp Pathol 88:217–226

    Article  Google Scholar 

  • Birk DE (2001) Type V collagen: heterotypic type I/V collagen interactions in the regulation of fibril assembly. Micron 32:223–237

    Article  CAS  Google Scholar 

  • Bowers ME, Tung GA, Trinh N, Leventhal E, Crisco JJ, Kimia B et al (2008) Effects of ACL interference screws on articular cartilage volume and thickness measurements with 1.5T and 3T MRI. Osteoarthritis Cartilage 16:572–578

    Article  CAS  Google Scholar 

  • Butler D (2008) Translational research: crossing the valley of death. Nature 453:840–842

    Article  CAS  Google Scholar 

  • Caplan AI (2005) Mesenchymal stem cells: cell-based reconstructive therapy in orthopedics. Tissue Eng 11:1198–1211

    Article  CAS  Google Scholar 

  • Caplan AI, Bruder SP (2001) Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med 7:259–264

    Article  CAS  Google Scholar 

  • Caplan AI, Haynesworth SE (1993) Method for enhancing the implantation and differentiation of marrow-derived mesenchymal cells. 5,197,985

    Google Scholar 

  • Caplan AI, Koutroupas S (1973) The control of muscle and cartilage development in the chick limb: the role of differential vascularization. J Embryol Exp Morphol 29:571–583

    CAS  Google Scholar 

  • Chu JCH, Gong X, Cai Y, Kirk MC, Zusag TW, Shott S et al (2009) Application of holographic display in radiotherapy treatment planning II: a multi-institutional study. J Appl Clin Med Phys 10:115–124

    Article  Google Scholar 

  • Daniel DM, Stone ML, Dobson BE, Fithian DC, Rossman DJ, Kaufman KR (1994) Fate of the Acl-injured patient – a prospective outcome study. Am J Sports Med 22:632–644

    Article  CAS  Google Scholar 

  • Doarn CR, Anvari M, Low T, Broderick TJ (2009) Evaluation of teleoperated surgical robots in an enclosed undersea environment. Telemed J E-Health 15:325–335

    Article  Google Scholar 

  • Drogset JO, Grontvedt T, Robak OR, Molster A, Viset AT, Engebretsen L (2006) A sixteen-year follow-up of three operative techniques for the treatment of acute ruptures of the anterior cruciate ligament. J Bone Joint Surg Am 88A:944–952

    Article  Google Scholar 

  • Erickson RR (1996) Holographic medical imaging: the laser as a visual scalpel – issues and observations on 3-D display. IEEE J Sel Topics Quantum Electron 2:976–983

    Article  CAS  Google Scholar 

  • Farraro KF, Kim KE, Woo SL-Y, Flowers JR, McCullough MB (2014) Revolutionizing orthopaedic biomaterials: the potential of biodegradable and bioresorbable magnesium-based materials for functional tissue engineering. J Biomech 47(9):1979–1986

    Google Scholar 

  • Fisher MB, Liang R, Jung HJ, Kim KE, Zamarra G, Almarza AJ et al (2012) Potential of healing a transected anterior cruciate ligament with genetically modified extracellular matrix bioscaffolds in a goat model. Knee Surg Sports Traumatol Arthrosc 20:1357–1365

    Article  Google Scholar 

  • Fithian DC, Paxton EW, Stone ML, Luetzow WF, Csintalan RP, Phelan D et al (2005) Prospective trial of a treatment algorithm for the management of the anterior cruciate ligament-injured knee. Am J Sports Med 33:335–346

    Article  Google Scholar 

  • Fong ELS, Chan CK, Goodman SB (2011) Stem cell homing in musculoskeletal injury. Biomaterials 32:395–409

    Article  CAS  Google Scholar 

  • Fox RJ, Harner CD, Sakane M, Carlin GJ, Woo SL-Y (1998) Determination of the in situ forces in the human posterior cruciate ligament using robotic technology – a cadaveric study. Am J Sports Med 26:395–401

    Article  CAS  Google Scholar 

  • Franklin ME Jr, Gonzalez JJ Jr, Glass JL (2004) Use of porcine small intestinal submucosa as a prosthetic device for laparoscopic repair of hernias in contaminated fields: 2-year follow-up. Hernia 8:186–189

    Article  Google Scholar 

  • Freytes DO, Martin J, Velankar SS, Lee AS, Badylak SF (2008) Preparation and rheological characterization of a gel form of the porcine urinary bladder matrix. Biomaterials 29:1630–1637

    Article  CAS  Google Scholar 

  • Friedmann T (1992) A brief-history of gene-therapy. Nat Genet 2:93–98

    Article  CAS  Google Scholar 

  • Fujie H, Livesay GA, Woo SL-Y, Kashiwaguchi S, Blomstrom G (1995) The use of a universal force-moment sensor to determine in-situ forces in ligaments: a new methodology. J Biomech Eng 117:1–7

    Article  CAS  Google Scholar 

  • Gilbert TW, Stewart-Akers AM, Sydeski J, Nguyen TD, Badylak SF, Woo SL-Y (2007) Gene expression by fibroblasts seeded on small intestinal submucosa and subjected to cyclic stretching. Tissue Eng 13:1313–1323

    Article  CAS  Google Scholar 

  • Godoy-Santos A, Cunha MV, Ortiz RT, Fernandes TD, Mattar R, dos Santos MCLG (2013) MMP-1 promoter polymorphism is associated with primary tendinopathy of the posterior tibial tendon. J Orthop Res 31:1103–1107

    Article  CAS  Google Scholar 

  • Haidegger T, Benyo Z (2008) Surgical robotic support for long duration space missions. Acta Astronaut 63:996–1005

    Article  Google Scholar 

  • Heller A (2004) Miniature biofuel cells. Phys Chem Chem Phys 6:209–216

    Article  CAS  Google Scholar 

  • Hodde JP, Record RD, Liang HA, Badylak SF (2001) Vascular endothelial growth factor in porcine-derived extracellular matrix. Endothelium 8:11–24

    Article  CAS  Google Scholar 

  • Hodde J, Record R, Tullius R, Badylak S (2002) Fibronectin peptides mediate HMEC adhesion to porcine-derived extracellular matrix. Biomaterials 23:1841–1848

    Article  CAS  Google Scholar 

  • Horwitz EM, Gordon PL, Koo WKK, Marx JC, Neel MD, McNall RY et al (2002) Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proc Natl Acad Sci U S A 99:8932–8937

    Article  CAS  Google Scholar 

  • Hu X, Krull P, de Graff B, Dowling K, Rogers JA, Arora WJ (2011) Stretchable inorganic-semiconductor electronic systems. Adv Mater 23:2933–2936

    Article  CAS  Google Scholar 

  • Johnson GA, Tramaglini DM, Levine RE, Ohno K, Choi NY, Woo SL-Y (1994) Tensile and viscoelastic properties of human patellar tendon. J Orthop Res 12:796–803

    Article  CAS  Google Scholar 

  • Johnson GA, Livesay GA, Woo SL-Y, Rajagopal KR (1996) A single integral finite strain viscoelastic model of ligaments and tendons. J Biomech Eng-Trans ASME 118:221–226

    Article  CAS  Google Scholar 

  • Kaiser J (2007) Clinical research: death prompts a review of gene therapy vector. Science 317:580

    Article  CAS  Google Scholar 

  • Karaoglu S, Fisher MB, Woo SL-Y, Fu YC, Liang R, Abramowitch SD (2008) Use of a bioscaffold to improve healing of a patellar tendon defect after graft harvest for ACL reconstruction: a study in rabbits. J Orthop Res 26:255–263

    Article  Google Scholar 

  • Kim KE, Liang R, Yang G, Woo SL-Y (2011) Effects of small intestine submucosa (SIS) hydrogel on the proliferation and matrix production of ACL fibroblasts. In: Lee TQ, Gupta R (eds) International symposium on ligaments and tendons – XI, vol XI, Irvine, p 49

    Google Scholar 

  • Klein-Nulend J, Bacabac RG, Mullender MG (2005) Mechanobiology of bone tissue. Patholog Biol 53:576–580

    Article  CAS  Google Scholar 

  • Knoll LD (2002) Use of porcine small intestinal submucosal graft in the surgical management of tunical deficiencies with penile prosthetic surgery. Urology 59:758–761

    Article  Google Scholar 

  • Koschwanez HE, Reichert WM (2007) In vitro, in vivo and post explantation testing of glucose-detecting biosensors: current methods and recommendations. Biomaterials 28:3687–3703

    Article  CAS  Google Scholar 

  • LeBlanc K, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis I et al (2008) Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371:1579–1586

    Article  CAS  Google Scholar 

  • Lee YG, Jeong WS, Yoon G (2012) Smartphone-based mobile health monitoring. Telemed E-Health 18:585–590

    Article  Google Scholar 

  • Li GA, Rudy TW, Allen C, Sakane M, Woo SL-Y (1998) Effect of combined axial compressive and anterior tibial loads on in situ forces in the anterior cruciate ligament: a porcine study. J Orthop Res 16:122–127

    Article  CAS  Google Scholar 

  • Liang R, Abramowitch S, Moon DK, Woo SL-Y (2005) A bioscaffold can enhance the healing of medial collateral ligament: a multidisciplinary functional tissue engineering study. In: Achilles orthopaedic sports medicine research award paper in ISAKOS 5th Biennial congress, Hollywood

    Google Scholar 

  • Liang R, Woo SL-Y, Nguyen TD, Liu PC, Almarza A (2008) Effects of a bioscaffold on collagen fibrillogenesis in healing medial collateral ligament in rabbits. J Orthop Res 26:1098–1104

    Article  CAS  Google Scholar 

  • Livesay GA, Fujie H, Kashiwaguchi S, Morrow DA, Fu FH, Woo SL-Y (1995) Determination of the in-situ forces and force distribution within the human anterior cruciate ligament. Ann Biomed Eng 23:467–474

    Article  CAS  Google Scholar 

  • Ma CB, Papageogiou CD, Debski RE, Woo SL-Y (2000) Interaction between the ACL graft and MCL in a combined ACL + MCL knee injury using a goat model. Acta Orthop Scand 71:387–393

    Article  CAS  Google Scholar 

  • Marescaux J, Leroy J, Gagner M, Rubino F, Mutter D, Vix M et al (2001) Transatlantic robot-assisted telesurgery. Nature 413:379–380

    Article  CAS  Google Scholar 

  • Maron DF (2014) After 23andMe, another personal genetics firm is charged with false advertising. http://www.scientificamerican.com/article/after-23andme-another. Accessed 14 August 2014

  • Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17:545–580

    Article  CAS  Google Scholar 

  • Mazzu M, Scalvini S, Giordano A, Frumento E, Wells H, Lokhorst K et al (2008) Wireless-accessible sensor populations for monitoring biological variables. J Telemed Telecare 14:135–137

    Article  Google Scholar 

  • Mostofi SB (2005) Who’s who in orthopedics. Springer, London, pp 141–142

    Google Scholar 

  • Murray MM, Spindler KP, Abreu E, Muller JA, Nedder A, Kelly M et al (2007a) Collagen-platelet rich plasma hydrogel enhances primary repair of the porcine anterior cruciate ligament. J Orthop Res 25:81–91

    Article  Google Scholar 

  • Murray MM, Spindler KP, Ballard P, Welch TP, Zurakowski D, Nanney LB (2007b) Enhanced histologic repair in a central wound in the anterior cruciate ligament with a collagen-platelet-rich plasma scaffold. J Orthop Res 25:1007–1017

    Article  CAS  Google Scholar 

  • Murray MM, Palmer M, Abreu E, Spindler KP, Zurakowski D, Fleming BC (2009) Platelet-rich plasma alone is not sufficient to enhance suture repair of the ACL in skeletally immature animals: an in vivo study. J Orthop Res 27(5):639–645

    Google Scholar 

  • Musahl V, Abramowitch SD, Gilbert TW, Tsuda E, Wang JH, Badylak SF et al (2004) The use of porcine small intestinal submucosa to enhance the healing of the medial collateral ligament–a functional tissue engineering study in rabbits. J Orthop Res 22:214–220

    Article  Google Scholar 

  • Myers CA, Torry MR, Peterson DS, Shelburne KB, Giphart JE, Krong JP et al (2011) Measurements of tibiofemoral kinematics during soft and stiff drop landings using biplane fluoroscopy. Am J Sports Med 39:1714–1722

    Article  Google Scholar 

  • Nguyen TD, Liang R, Woo SL-Y, Burton SD, Wu CF, Almarza A et al (2009) Effects of cell seeding and cyclic stretch on the fiber remodeling in an extracellular matrix-derived bioscaffold. Tissue Eng Part A 15:957–963

    Article  CAS  Google Scholar 

  • Nikukar H, Reid S, Tsimbouri PM, Riehle MO, Curtis ASG, Dalby MJ (2013) Osteogenesis of mesenchymal stem cells by nanoscale mechanotransduction. ACS Nano 7:2758–2767

    Article  CAS  Google Scholar 

  • O’Connor RC, Harding JN 3rd, Steinberg GD (2002) Novel modification of partial nephrectomy technique using porcine small intestine submucosa. Urology 60:906–909

    Article  Google Scholar 

  • Ohlsson A, Kubo SH, Steinhaus D, Connelly DT, Adler S, Bitkover C et al (2001) Continuous ambulatory monitoring of absolute right ventricular pressure and mixed venous oxygen saturation in patients with heart failure using an implantable haemodynamic monitor – results of a 1 year multicentre feasibility study. Eur Heart J 22:942–954

    Article  CAS  Google Scholar 

  • Owen M, Friedenstein AJ (1988) Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found Symp 136:42–60

    CAS  Google Scholar 

  • Ozcivici E, Luu YK, Adler B, Qin YX, Rubin J, Judex S et al (2010) Mechanical signals as anabolic agents in bone. Nat Rev Rheumatol 6:50–59

    Article  CAS  Google Scholar 

  • Pearse RV, Esshaki D, Tabin CJ, Murray MM (2009) Genome-wide expression analysis of intra- and extraarticular connective tissue. J Orthop Res 27:427–434

    Article  CAS  Google Scholar 

  • Polacheck WJ, Li R, Uzel SGM, Kamm RD (2013) Microfluidic platforms for mechanobiology. Lab Chip 13:2252–2267

    Article  CAS  Google Scholar 

  • Rashvand HF, Salcedo VT, Sanchez EM, Iliescu D (2008) Ubiquitous wireless telemedicine. IET Commun 2:237–254

    Article  Google Scholar 

  • Rosen J, Hannaford B (2006) DOC at a distance – robot surgeons promise to save lives in remote communities, war zones, and disaster-stricken areas. IEEE Spectr 43:34–39

    Article  Google Scholar 

  • Saw KY, Anz A, Jee CSY, Merican S, Ng RCS, Roohi SA et al (2013) Articular cartilage regeneration with autologous peripheral blood stem cells versus hyaluronic acid: a randomized controlled trial. Arthrosc-J Arthrosc Relat Surg 29:684–694

    Article  Google Scholar 

  • Schultz DJ, Brasel KJ, Spinelli KS, Rasmussen J, Weigelt JA (2002) Porcine small intestine submucosa as a treatment for enterocutaneous fistulas. J Am Coll Surg 194:541–543

    Article  Google Scholar 

  • Schvartzman M, Palma M, Sable J, Abramson J, Hu XA, Sheetz MP et al (2011) Nanolithographic control of the spatial organization of cellular adhesion receptors at the single-molecule level. Nano Lett 11:1306–1312

    Article  CAS  Google Scholar 

  • Selmi TAS, Fithian D, Neyret P (2006) The evolution of osteoarthritis in 103 patients with ACL reconstruction at 17 years follow-up. Knee 13:353–358

    Article  Google Scholar 

  • September AV, Schwellnus MP, Collins M (2007) Tendon and ligament injuries: the genetic component. Br J Sports Med 41:241–246

    Article  Google Scholar 

  • Shen C, Jiang SD, Jiang LS, Dai LY (2010) Bioabsorbable versus metallic interference screw fixation in anterior cruciate ligament reconstruction: a meta-analysis of randomized controlled trials. Arthroscopy 26:705–713

    Article  Google Scholar 

  • Smith BA, Livesay GA, Woo SL-Y (1993) Biology and biomechanics of the anterior cruciate ligament. Clin Sports Med 12:637–670

    Article  CAS  Google Scholar 

  • Smith CA, Tennent TD, Pearson SE, Beach WR (2003) Fracture of Bilok interference screws on insertion during anterior cruciate ligament reconstruction. Arthroscopy 19:E115–E117

    Article  Google Scholar 

  • Steadman JR, Cameron-Donaldson ML, Briggs KK, Rodkey WG (2006) A minimally invasive technique (“healing response”) to treat proximal ACL injuries in skeletally immature athletes. J Knee Surg 19:8–13

    Article  Google Scholar 

  • Vavken P, Fleming BC, Mastrangelo AN, Machan JT, Murray MM (2012) Biomechanical outcomes after bioenhanced anterior cruciate ligament repair and anterior cruciate ligament reconstruction are equal in a porcine model. Arthroscopy 28:672–680

    Article  Google Scholar 

  • Voytik-Harbin SL, Brightman AO, Kraine MR, Waisner B, Badylak SF (1997) Identification of extractable growth factors from small intestinal submucosa. J Cell Biochem 67:478–491

    Article  CAS  Google Scholar 

  • Walton M, Cotton NJ (2007) Long-term in vivo degradation of poly-l-lactide (PLLA) in bone. J Biomater Appl 21:395–411

    Article  CAS  Google Scholar 

  • Wang JHC, Thampatty BP, Lin JS, Im HJ (2007) Mechanoregulation of gene expression in fibroblasts. Gene 391:1–15

    Article  CAS  Google Scholar 

  • Witte F, Ulrich H, Palm C, Willbold E (2007) Biodegradable magnesium scaffolds: Part II: peri-implant bone remodeling. J Biomed Mater Res A 81:757–765

    Article  CAS  Google Scholar 

  • Woo SL-Y, Orlando CA, Gomez MA, Frank CB, Akeson WH (1986) Tensile properties of the medial collateral ligament as a function of age. J Orthop Res 4:133–141

    Article  CAS  Google Scholar 

  • Woo SL-Y, Hollis JM, Adams DJ, Lyon RM, Takai S (1991) Tensile properties of the human femur-anterior cruciate ligament-tibia complex – the effects of specimen age and orientation. Am J Sports Med 19:217–225

    Article  CAS  Google Scholar 

  • Woo SL-Y, Hildebrand K, Watanabe N, Fenwick JA, Papageorgiou CD, Wang JHC (1999) Tissue engineering of ligament and tendon healing. Clin Orthop Relat Res (367 Suppl):S312–S323

    Google Scholar 

  • Woo SL-Y, Jia F, Zou L, Gabriel MT (2004) Functional tissue engineering for ligament healing: potential of antisense gene therapy. Ann Biomed Eng 32:342–351

    Article  Google Scholar 

  • Woo SL-Y, Abramowitch SD, Kilger R, Liang R (2006) Biomechanics of knee ligaments: injury, healing, and repair. J Biomech 39:1–20

    Article  Google Scholar 

  • Ye RH, Chen YH, Yau WP (2012) A simple and novel hybrid robotic system for robot-assisted femur fracture reduction. Adv Robot 26:83–104

    Article  Google Scholar 

  • Zberg B, Uggowitzer PJ, Loffler JF (2009) MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nat Mater 8:887–891

    Article  CAS  Google Scholar 

  • Zhang JY, Wang JHC (2013) The effects of mechanical loading on tendons – an in vivo and in vitro model study. PLoS One 8:e71740

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savio L.-Y. Woo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Woo, S.LY., Kim, K.E., Farraro, K.F. (2015). Orthopedic Research in the Year 2025. In: Doral, M.N., Karlsson, J. (eds) Sports Injuries. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36569-0_249

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36569-0_249

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36568-3

  • Online ISBN: 978-3-642-36569-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics