Skip to main content
Log in

Monte Carlo calculations of the replacement correction factor, P repl, for cylindrical chamber cavities in clinical photon and electron beams

  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

The purpose of this study was to calculate the replacement correction factor, P repl (the product P gr P fl in the AAPM’s notation, or the product p cav p dis in the IAEA’s notation), at a reference depth, d ref, for cylindrical chamber cavities in clinical photon and electron beams by Monte Carlo simulation. P repl was calculated for cavities with a combination of various diameters and lengths. P repl values calculated in photon and electron beams were typically higher than those recommended by the TG-51 and TRS-398 dosimetry protocols. P repl values for a Farmer chamber cavity were higher by 0.3 to 0.2 % and by 0.7 to 0.4 %, respectively, than data of TG-51 and TRS-398, at photon energies of 60Co to 18 MV. Similarly, the P repl values for electron beams were higher by 1.5 to 1.1 % than data for both protocols, in a range of 6–18 MeV. The P repl values depended upon the cavity diameter and length, especially for lower electron energies. We found that P repl values of cylindrical chamber cavities for photon and electron beams were significantly different from those recommended by TG-51 and TRS-398.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Almond PR, Biggs PJ, Coursey BM, Hanson WF, Huq MS, Nath R, Rogers DWO. AAPM’s TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams. Med Phys. 1999;26:1847–70.

    Article  PubMed  CAS  Google Scholar 

  2. IAEA. Absorbed dose determination in external beam radiotherapy: An international code of practice for dosimetry based on standards for absorbed dose to water. Technical Report Series No. 398. IAEA, Vienna; 2000.

  3. JSMP: Japanese Society of Medical Physics. The standard dosimetry of absorbed dose in external beam radiotherapy. Tsusho-sangyo-kenkyusya, Tokyo, 2002 (in Japanese).

  4. IPEM. The IPEM code of practice for electron dosimetry for radiotherapy beams of initial energy from 4 to 25 MeV based on an absorbed dose to water calibration. Phys Med Biol. 2003;48:2929–70.

    Article  Google Scholar 

  5. Cunningham JR, Sontag MR. Displacement corrections used in absorbed dose determinations. Med Phys. 1980;7:672–6.

    Article  PubMed  CAS  Google Scholar 

  6. Johansson KA, Mattsson LO, Lindborg L, and Svensson H. Absorbed-dose determination with ionization chambers in electron and photon beams having energies between 1 and 50 MeV. In: IAEA Symposium Proceeding. Vienna; 1977. p. 243–70.

  7. AAPM TG-21. A protocol for the determination of absorbed dose from high-energy photon and electron beams. Med Phys. 1983;10:741–71.

    Google Scholar 

  8. Wang LLW, Rogers DWO. The replacement correction factors for cylindrical chambers in high-energy photon beams. Phys Med Biol. 2009;54:1609–20.

    Article  PubMed  CAS  Google Scholar 

  9. Wang LLW, Rogers DWO. Replacement correction factors for cylindrical ion chambers in electron beams. Med Phys. 2009;36:4600–8.

    Article  PubMed  CAS  Google Scholar 

  10. Kawrakow I, Mainegra-Hing E, Tessier F, and Walters BRB. The EGSnrc C++ class library. National Research Council of Canada Technical Report No. PIRS-898 (rev A); 2009. http://www.irs.inms.nrc.ca/inms/irs/EGSnrc/PIRS898/ (unpublished).

  11. Kawrakow I. egspp: the EGSnrc C++ class library. National Research Council of Canada Technical Report No. PIRS-899; 2005.

  12. Buckley LA, Rogers DWO. Wall correction factors, P wall, for parallel-plate ionization chambers. Med Phys. 2006;33:1788–96.

    Article  PubMed  Google Scholar 

  13. Zink K, Wulff J. Monte Carlo calculations of beam quality correction factors k Q for electron dosimetry with a parallel-plate Roos chamber. Phys Med Biol. 2008;53:1595–607.

    Article  PubMed  CAS  Google Scholar 

  14. Araki F. Monte Carlo calculations of correction factors for plane-parallel ionization chambers in clinical electron dosimetry. Med Phys. 2008;35:4033–40.

    Article  PubMed  Google Scholar 

  15. Wang LLW, Rogers DWO. Calculation of the replacement correction factors for ion chambers in megavoltage beams by Monte Carlo simulation. Med Phys. 2008;35:1747–55.

    Article  PubMed  CAS  Google Scholar 

  16. Wang LLW, La Russa DJ, Rogers DWO. Systematic uncertainties in the Monte Carlo of ion chamber replacement correction factors. Med Phys. 2009;36:1785–9.

    Article  PubMed  CAS  Google Scholar 

  17. Kawrakow I. On the effective point of measurement in megavoltage photon beams. Med Phys. 2006;33:1829–39.

    Article  PubMed  Google Scholar 

  18. Sempau J, Andreo P. Configuration of the electron transport algorithm of PENELOPE to simulate ion chambers. Phys Med Biol. 2006;51:3533–48.

    Article  PubMed  CAS  Google Scholar 

  19. Mora G, Maito A, Rogers DWO. Monte Carlo simulation of a typical 60Co therapy source. Med Phys. 1999;26:2494–502.

    Article  PubMed  CAS  Google Scholar 

  20. Kawrakow I, Mainegra-Hing E, Rogers DWO, Tessier F, and Walters BRB. The EGSnrc code system: Monte Carlo Simulation of Electron and Photon Transport. National Research Council of Canada Report PIRS-701; 2009.

  21. Rogers DWO, Faddegon BA, Ding GX, Ma CM, We J, Mackie TR. BEAM: a Monte Carlo code to simulate radiotherapy treatment units. Med Phys. 1995;22:503–24.

    Article  PubMed  CAS  Google Scholar 

  22. Rogers DWO, Walters BRB, and Kawrakow I. BEAMnrc Users Manual. National Research Council of Canada Report PIRS-509 (A) Rev K; 2009.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fujio Araki.

About this article

Cite this article

Araki, F. Monte Carlo calculations of the replacement correction factor, P repl, for cylindrical chamber cavities in clinical photon and electron beams. Radiol Phys Technol 5, 199–206 (2012). https://doi.org/10.1007/s12194-012-0154-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-012-0154-5

Keywords

Navigation