Skip to main content

Advertisement

Log in

Preemptive Cardioprotective Strategies in Patients Receiving Chemotherapy

  • Heart Failure Prevention (W Tang, Section Editor)
  • Published:
Current Cardiovascular Risk Reports Aims and scope Submit manuscript

Abstract

Chemotherapy agents have greatly improved outcomes and survival of patients with cancer but have also been associated with significant cardiotoxicity. The advent of cardiotoxicity is detrimental to patients both during cancer therapy, by limiting the extent of therapy and therefore chance of cure, and also during cancer survivorship, by causing devastating cardiac morbidity and mortality. In this article, we not only review the types of agents most often associated with cardiotoxicity, proposed mechanisms of cardiac injury, but more importantly, how to attenuate or prevent it all together. We review the available data and evidence for different strategies to prevent cardiac damage during chemotherpathy and propose our own protocols for risk stratification, monitoring, and prevention of cardiotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Horner MJRL, Krapcho M, Neyman N, Aminou R, Howlader N, et al. SEER cancer statistics review, 1975–2006. Bethesda (MD): National Cancer Institute; 2009.

    Google Scholar 

  2. Patnaik JL, Byers T, DiGuiseppi C, Dabelea D, Denberg TD. Cardiovascular disease competes with breast cancer as the leading cause of death for older females diagnosed with breast cancer: a retrospective cohort study. Breast Cancer Res. 2011;13(3):R64. doi:10.1186/bcr2901.

    PubMed  PubMed Central  Google Scholar 

  3. Oliveira GH, Dupont M, Naftel D, Myers SL, Yuan Y, Tang WH, et al. Increased need for right ventricular support in patients with chemotherapy-induced cardiomyopathy undergoing mechanical circulatory support: outcomes from the INTERMACS Registry (Interagency Registry for Mechanically Assisted Circulatory Support). J Am Coll Cardiol. 2014;63(3):240–8. doi:10.1016/j.jacc.2013.09.040. This study of patients undergoing mechanical support for cardiomyopathy provided novel insights into right ventricular failure in patients with chemotherapy-induced cardiomyopathy.

    PubMed  Google Scholar 

  4. Oliveira GH, Hardaway BW, Kucheryavaya AY, Stehlik J, Edwards LB, Taylor DO. Characteristics and survival of patients with chemotherapy-induced cardiomyopathy undergoing heart transplantation. J Heart Lung Transplant Off Publ Int Soc Heart Transplant. 2012;31(8):805–10. doi:10.1016/j.healun.2012.03.018.

    Google Scholar 

  5. Oliveira GH, Mukerji S, Hernandez AV, Qattan MY, Banchs J, Durand JB, et al. Incidence, predictors, and impact on survival of left ventricular systolic dysfunction and recovery in advanced cancer patients. Am J Cardiol. 2014;113(11):1893–8. doi:10.1016/j.amjcard.2014.03.018. This study provides insights into the natural course of chemotherapy induced LV dysfunction, with analysis of potential predictors.

    PubMed  Google Scholar 

  6. Lenihan DJ, Cardinale D, Cipolla CM. The compelling need for a cardiology and oncology partnership and the birth of the International CardiOncology Society. Prog Cardiovasc Dis. 2010;53(2):88–93. doi:10.1016/j.pcad.2010.06.002.

    PubMed  Google Scholar 

  7. Yeh ET. Onco-cardiology: the time has come. Tex Heart Inst J / from the Texas Heart Institute of St Luke's Episcopal Hospital, Texas Children's Hospital. 2011;38(3):246–7.

    Google Scholar 

  8. Chen J, Long JB, Hurria A, Owusu C, Steingart RM, Gross CP. Incidence of heart failure or cardiomyopathy after adjuvant trastuzumab therapy for breast cancer. J Am Coll Cardiol. 2012;60(24):2504–12. doi:10.1016/j.jacc.2012.07.068.

    PubMed  CAS  Google Scholar 

  9. Von Hoff DD, Layard MW, Basa P, Davis Jr HL, Von Hoff AL, Rozencweig M, et al. Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med. 1979;91(5):710–7.

    Google Scholar 

  10. Rakar S, Sinagra G, Di Lenarda A, Poletti A, Bussani R, Silvestri F, et al. Epidemiology of dilated cardiomyopathy. A prospective post-mortem study of 5252 necropsies. The Heart Muscle Disease Study Group. Eur Heart J. 1997;18(1):117–23.

    PubMed  CAS  Google Scholar 

  11. Felker GM, Thompson RE, Hare JM, Hruban RH, Clemetson DE, Howard DL, et al. Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy. N Engl J Med. 2000;342(15):1077–84. doi:10.1056/NEJM200004133421502.

    PubMed  CAS  Google Scholar 

  12. Singal PK, Iliskovic N. Doxorubicin-induced cardiomyopathy. N Engl J Med. 1998;339(13):900–5. doi:10.1056/NEJM199809243391307.

    PubMed  CAS  Google Scholar 

  13. Wouters KA, Kremer LC, Miller TL, Herman EH, Lipshultz SE. Protecting against anthracycline-induced myocardial damage: a review of the most promising strategies. Br J Haematol. 2005;131(5):561–78. doi:10.1111/j.1365-2141.2005.05759.x.

    PubMed  CAS  Google Scholar 

  14. Kremer LC, van Dalen EC, Offringa M, Ottenkamp J, Voute PA. Anthracycline-induced clinical heart failure in a cohort of 607 children: long-term follow-up study. J Clin Oncol Off J Am Soc Clin Oncol. 2001;19(1):191–6.

    CAS  Google Scholar 

  15. Colucci WS, Kolias TJ, Adams KF, Armstrong WF, Ghali JK, Gottlieb SS, et al. Metoprolol reverses left ventricular remodeling in patients with asymptomatic systolic dysfunction: the REversal of VEntricular Remodeling with Toprol-XL (REVERT) trial. Circulation. 2007;116(1):49–56. doi:10.1161/CIRCULATIONAHA.106.666016.

    PubMed  CAS  Google Scholar 

  16. Daubert C, Gold MR, Abraham WT, Ghio S, Hassager C, Goode G, et al. Prevention of disease progression by cardiac resynchronization therapy in patients with asymptomatic or mildly symptomatic left ventricular dysfunction: insights from the European cohort of the REVERSE (Resynchronization Reverses Remodeling in Systolic Left Ventricular Dysfunction) trial. J Am Coll Cardiol. 2009;54(20):1837–46. doi:10.1016/j.jacc.2009.08.011.

    PubMed  Google Scholar 

  17. Khakoo AY, Liu PP, Force T, Lopez-Berestein G, Jones LW, Schneider J, et al. Cardiotoxicity due to cancer therapy. Tex Heart Inst J / from the Texas Heart Institute of St Luke's Episcopal Hospital, Texas Children's Hospital. 2011;38(3):253–6.

    Google Scholar 

  18. Swain SM, Whaley FS, Ewer MS. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer. 2003;97(11):2869–79. doi:10.1002/cncr.11407.

    PubMed  CAS  Google Scholar 

  19. Hershman DL, McBride RB, Eisenberger A, Tsai WY, Grann VR, Jacobson JS. Doxorubicin, cardiac risk factors, and cardiac toxicity in elderly patients with diffuse B-cell non-Hodgkin's lymphoma. J Clin Oncol Off J Am Soc Clin Oncol. 2008;26(19):3159–65. doi:10.1200/JCO.2007.14.1242.

    CAS  Google Scholar 

  20. Pinder MC, Duan Z, Goodwin JS, Hortobagyi GN, Giordano SH. Congestive heart failure in older women treated with adjuvant anthracycline chemotherapy for breast cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2007;25(25):3808–15. doi:10.1200/JCO.2006.10.4976.

    CAS  Google Scholar 

  21. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344(11):783–92. doi:10.1056/NEJM200103153441101.

    PubMed  CAS  Google Scholar 

  22. Keefe DL. Trastuzumab-associated cardiotoxicity. Cancer. 2002;95(7):1592–600. doi:10.1002/cncr.10854.

    PubMed  CAS  Google Scholar 

  23. Ewer MS, Vooletich MT, Durand JB, Woods ML, Davis JR, Valero V, et al. Reversibility of trastuzumab-related cardiotoxicity: new insights based on clinical course and response to medical treatment. J Clin Oncol Off J Am Soc Clin Oncol. 2005;23(31):7820–6. doi:10.1200/JCO.2005.13.300.

    CAS  Google Scholar 

  24. Chavez-MacGregor M, Zhang N, Buchholz TA, Zhang Y, Niu J, Elting L, et al. Trastuzumab-related cardiotoxicity among older patients with breast cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2013;31(33):4222–8. doi:10.1200/JCO.2013.48.7884.

    CAS  Google Scholar 

  25. Seidman A, Hudis C, Pierri MK, Shak S, Paton V, Ashby M, et al. Cardiac dysfunction in the trastuzumab clinical trials experience. J Clin Oncol Off J Am Soc Clin Oncol. 2002;20(5):1215–21.

    CAS  Google Scholar 

  26. Halyard MY, Pisansky TM, Dueck AC, Suman V, Pierce L, Solin L, et al. Radiotherapy and adjuvant trastuzumab in operable breast cancer: tolerability and adverse event data from the NCCTG Phase III Trial N9831. J Clin Oncol Off J Am Soc Clin Oncol. 2009;27(16):2638–44. doi:10.1200/JCO.2008.17.9549.

    CAS  Google Scholar 

  27. Serrano C, Cortes J, De Mattos-Arruda L, Bellet M, Gomez P, Saura C, et al. Trastuzumab-related cardiotoxicity in the elderly: a role for cardiovascular risk factors. Ann Oncol Off J Eur Soc Med Oncol / ESMO. 2012;23(4):897–902. doi:10.1093/annonc/mdr348.

    CAS  Google Scholar 

  28. Bonifazi M, Franchi M, Rossi M, Moja L, Zambelli A, Zambon A, et al. Trastuzumab-related cardiotoxicity in early breast cancer: a cohort study. Oncologist. 2013;18(7):795–801. doi:10.1634/theoncologist.2013-0065.

    PubMed  CAS  PubMed Central  Google Scholar 

  29. Chu TF, Rupnick MA, Kerkela R, Dallabrida SM, Zurakowski D, Nguyen L, et al. Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib. Lancet. 2007;370(9604):2011–9. doi:10.1016/S0140-6736(07)61865-0.

    PubMed  CAS  PubMed Central  Google Scholar 

  30. Schmidinger M, Zielinski CC, Vogl UM, Bojic A, Bojic M, Schukro C, et al. Cardiac toxicity of sunitinib and sorafenib in patients with metastatic renal cell carcinoma. J Clin Oncol Off J Am Soc Clin Oncol. 2008;26(32):5204–12. doi:10.1200/JCO.2007.15.6331.

    Google Scholar 

  31. Khakoo AY, Kassiotis CM, Tannir N, Plana JC, Halushka M, Bickford C, et al. Heart failure associated with sunitinib malate: a multitargeted receptor tyrosine kinase inhibitor. Cancer. 2008;112(11):2500–8. doi:10.1002/cncr.23460.

    PubMed  CAS  Google Scholar 

  32. Chen MH, Kerkela R, Force T. Mechanisms of cardiac dysfunction associated with tyrosine kinase inhibitor cancer therapeutics. Circulation. 2008;118(1):84–95. doi:10.1161/CIRCULATIONAHA.108.776831.

    PubMed  PubMed Central  Google Scholar 

  33. Hayman SR, Leung N, Grande JP, Garovic VD. VEGF inhibition, hypertension, and renal toxicity. Curr Oncol Rep. 2012;14(4):285–94. doi:10.1007/s11912-012-0242-z.

    PubMed  CAS  PubMed Central  Google Scholar 

  34. Tannir NM, Wong YN, Kollmannsberger CK, Ernstoff MS, Perry DJ, Appleman LJ, et al. Phase 2 trial of linifanib (ABT-869) in patients with advanced renal cell cancer after sunitinib failure. Eur J Cancer. 2011;47(18):2706–14. doi:10.1016/j.ejca.2011.09.002.

    PubMed  CAS  PubMed Central  Google Scholar 

  35. Kane RC, Farrell AT, Saber H, Tang S, Williams G, Jee JM, et al. Sorafenib for the treatment of advanced renal cell carcinoma. Clin Cancer Res Off J Am Assoc Cancer Res. 2006;12(24):7271–8. doi:10.1158/1078-0432.CCR-06-1249.

    CAS  Google Scholar 

  36. Francis J, Ahluwalia MS, Wetzler M, Wang E, Paplham P, Smiley S, et al. Reversible cardiotoxicity with tyrosine kinase inhibitors. Clin Adv Hematol Oncol H&O. 2010;8(2):128–32.

    Google Scholar 

  37. Meydan N, Kundak I, Yavuzsen T, Oztop I, Barutca S, Yilmaz U, et al. Cardiotoxicity of de Gramont's regimen: incidence, clinical characteristics and long-term follow-up. Jpn J Clin Oncol. 2005;35(5):265–70. doi:10.1093/jjco/hyi071.

    PubMed  Google Scholar 

  38. Sorrentino MF, Kim J, Foderaro AE, Truesdell AG. 5-fluorouracil induced cardiotoxicity: review of the literature. Cardiol J. 2012;19(5):453–8.

    PubMed  Google Scholar 

  39. Mosseri M, Fingert HJ, Varticovski L, Chokshi S, Isner JM. In vitro evidence that myocardial ischemia resulting from 5-fluorouracil chemotherapy is due to protein kinase C-mediated vasoconstriction of vascular smooth muscle. Cancer Res. 1993;53(13):3028–33.

    PubMed  CAS  Google Scholar 

  40. Labianca R, Beretta G, Clerici M, Fraschini P, Luporini G. Cardiac toxicity of 5-fluorouracil: a study on 1083 patients. Tumori. 1982;68(6):505–10.

    PubMed  CAS  Google Scholar 

  41. Oleksowicz L, Bruckner HW. Prophylaxis of 5-fluorouracil-induced coronary vasospasm with calcium channel blockers. Am J Med. 1988;85(5):750–1.

    PubMed  CAS  Google Scholar 

  42. Jensen SA, Sorensen JB. Risk factors and prevention of cardiotoxicity induced by 5-fluorouracil or capecitabine. Cancer Chemother Pharmacol. 2006;58(4):487–93. doi:10.1007/s00280-005-0178-1.

    PubMed  CAS  Google Scholar 

  43. Akpek G, Hartshorn KL. Failure of oral nitrate and calcium channel blocker therapy to prevent 5-fluorouracil-related myocardial ischemia: a case report. Cancer Chemother Pharmacol. 1999;43(2):157–61. doi:10.1007/s002800050877.

    PubMed  CAS  Google Scholar 

  44. Hensley ML, Hagerty KL, Kewalramani T, Green DM, Meropol NJ, Wasserman TH, et al. American Society of Clinical Oncology 2008 clinical practice guideline update: use of chemotherapy and radiation therapy protectants. J Clin Oncol Off J Am Soc Clin Oncol. 2009;27(1):127–45. doi:10.1200/JCO.2008.17.2627.

    CAS  Google Scholar 

  45. van Royen N, Jaffe CC, Krumholz HM, Johnson KM, Lynch PJ, Natale D, et al. Comparison and reproducibility of visual echocardiographic and quantitative radionuclide left ventricular ejection fractions. Am J Cardiol. 1996;77(10):843–50.

    PubMed  Google Scholar 

  46. Nousiainen T, Vanninen E, Jantunen E, Puustinen J, Remes J, Rantala A, et al. Comparison of echocardiography and radionuclide ventriculography in the follow-up of left ventricular systolic function in adult lymphoma patients during doxorubicin therapy. J Intern Med. 2001;249(4):297–303.

    PubMed  CAS  Google Scholar 

  47. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, et al. Recommendations for chamber quantification: a report from the American Society of Echocardiography's Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr. 2005;18(12):1440–63. doi:10.1016/j.echo.2005.10.005.

    Google Scholar 

  48. Nousiainen T, Jantunen E, Vanninen E, Hartikainen J. Early decline in left ventricular ejection fraction predicts doxorubicin cardiotoxicity in lymphoma patients. Br J Cancer. 2002;86(11):1697–700. doi:10.1038/sj.bjc.6600346.

    PubMed  CAS  PubMed Central  Google Scholar 

  49. Gopal AS, Shen Z, Sapin PM, Keller AM, Schnellbaecher MJ, Leibowitz DW, et al. Assessment of cardiac function by three-dimensional echocardiography compared with conventional noninvasive methods. Circulation. 1995;92(4):842–53.

    PubMed  CAS  Google Scholar 

  50. Thavendiranathan P, Grant AD, Negishi T, Plana JC, Popovic ZB, Marwick TH. Reproducibility of echocardiographic techniques for sequential assessment of left ventricular ejection fraction and volumes: application to patients undergoing cancer chemotherapy. J Am Coll Cardiol. 2013;61(1):77–84. doi:10.1016/j.jacc.2012.09.035.

    PubMed  Google Scholar 

  51. Walker J, Bhullar N, Fallah-Rad N, Lytwyn M, Golian M, Fang T, et al. Role of three-dimensional echocardiography in breast cancer: comparison with two-dimensional echocardiography, multiple-gated acquisition scans, and cardiac magnetic resonance imaging. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28(21):3429–36. doi:10.1200/JCO.2009.26.7294.

    Google Scholar 

  52. Abraham TP, Dimaano VL, Liang HY. Role of tissue Doppler and strain echocardiography in current clinical practice. Circulation. 2007;116(22):2597–609. doi:10.1161/CIRCULATIONAHA.106.647172.

    PubMed  Google Scholar 

  53. Dandel M, Lehmkuhl H, Knosalla C, Suramelashvili N, Hetzer R. Strain and strain rate imaging by echocardiography - basic concepts and clinical applicability. Curr Cardiol Rev. 2009;5(2):133–48. doi:10.2174/157340309788166642.

    PubMed  PubMed Central  Google Scholar 

  54. Thavendiranathan P, Poulin F, Lim KD, Plana JC, Woo A, Marwick TH. Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy - a systematic review. J Am Coll Cardiol. 2014. doi:10.1016/j.jacc.2014.01.073. This study provides a systematic analysis of the use of strain imaging in detection and monitoring of chemotherapy-induced cardiotoxicity.

    PubMed  Google Scholar 

  55. Neilan TG, Jassal DS, Perez-Sanz TM, Raher MJ, Pradhan AD, Buys ES, et al. Tissue Doppler imaging predicts left ventricular dysfunction and mortality in a murine model of cardiac injury. Eur Heart J. 2006;27(15):1868–75. doi:10.1093/eurheartj/ehl013.

    PubMed  Google Scholar 

  56. Sawaya H, Sebag IA, Plana JC, Januzzi JL, Ky B, Cohen V, et al. Early detection and prediction of cardiotoxicity in chemotherapy-treated patients. Am J Cardiol. 2011;107(9):1375–80. doi:10.1016/j.amjcard.2011.01.006.

    PubMed  CAS  PubMed Central  Google Scholar 

  57. Sawaya H, Sebag IA, Plana JC, Januzzi JL, Ky B, Tan TC, et al. Assessment of echocardiography and biomarkers for the extended prediction of cardiotoxicity in patients treated with anthracyclines, taxanes, and trastuzumab. Circ Cardiovasc Imaging. 2012;5(5):596–603. doi:10.1161/CIRCIMAGING.112.973321.

    PubMed  PubMed Central  Google Scholar 

  58. Negishi K, Negishi T, Hare JL, Haluska BA, Plana JC, Marwick TH. Independent and incremental value of deformation indices for prediction of trastuzumab-induced cardiotoxicity. J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr. 2013;26(5):493–8. doi:10.1016/j.echo.2013.02.008.

    Google Scholar 

  59. Mornos C, Petrescu L. Early detection of anthracycline-mediated cardiotoxicity: the value of considering both global longitudinal left ventricular strain and twist. Can J Physiol Pharmacol. 2013;91(8):601–7. doi:10.1139/cjpp-2012-0398.

    PubMed  CAS  Google Scholar 

  60. Herman EH, Zhang J, Lipshultz SE, Rifai N, Chadwick D, Takeda K, et al. Correlation between serum levels of cardiac troponin-T and the severity of the chronic cardiomyopathy induced by doxorubicin. J Clin Oncol Off J Am Soc Clin Oncol. 1999;17(7):2237–43.

    CAS  Google Scholar 

  61. Sparano JA, Wolff AC, Brown D. Troponins for predicting cardiotoxicity from cancer therapy. Lancet. 2000;356(9246):1947–8. doi:10.1016/S0140-6736(00)03304-3.

    PubMed  CAS  Google Scholar 

  62. Cardinale D, Sandri MT, Colombo A, Colombo N, Boeri M, Lamantia G, et al. Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation. 2004;109(22):2749–54. doi:10.1161/01.CIR.0000130926.51766.CC.

    PubMed  CAS  Google Scholar 

  63. Auner HW, Tinchon C, Linkesch W, Tiran A, Quehenberger F, Link H, et al. Prolonged monitoring of troponin T for the detection of anthracycline cardiotoxicity in adults with hematological malignancies. Ann Hematol. 2003;82(4):218–22. doi:10.1007/s00277-003-0615-3.

    PubMed  CAS  Google Scholar 

  64. Cardinale D, Sandri MT, Martinoni A, Tricca A, Civelli M, Lamantia G, et al. Left ventricular dysfunction predicted by early troponin I release after high-dose chemotherapy. J Am Coll Cardiol. 2000;36(2):517–22.

    PubMed  CAS  Google Scholar 

  65. Koseoglu V, Berberoglu S, Karademir S, Kismet E, Yurttutan N, Demirkaya E, et al. Cardiac troponin I: is it a marker to detect cardiotoxicity in children treated with doxorubicin? Turk J Pediatr. 2005;47(1):17–22.

    PubMed  Google Scholar 

  66. Mathew P, Suarez W, Kip K, Bayar E, Jasty R, Matloub Y, et al. Is there a potential role for serum cardiac troponin I as a marker for myocardial dysfunction in pediatric patients receiving anthracycline-based therapy? A pilot study. Cancer Investig. 2001;19(4):352–9.

    CAS  Google Scholar 

  67. Morris PG, Chen C, Steingart R, Fleisher M, Lin N, Moy B, et al. Troponin I and C-reactive protein are commonly detected in patients with breast cancer treated with dose-dense chemotherapy incorporating trastuzumab and lapatinib. Clin Cancer Res Off J Am Assoc Cancer Res. 2011;17(10):3490–9. doi:10.1158/1078-0432.CCR-10-1359.

    CAS  Google Scholar 

  68. Ky B, Putt M, Sawaya H, French B, Januzzi Jr JL, Sebag IA, et al. Early increases in multiple biomarkers predict subsequent cardiotoxicity in patients with breast cancer treated with doxorubicin, taxanes, and trastuzumab. J Am Coll Cardiol. 2014;63(8):809–16. doi:10.1016/j.jacc.2013.10.061.

    PubMed  CAS  Google Scholar 

  69. Chen S, Garami M, Gardner DG. Doxorubicin selectively inhibits brain versus atrial natriuretic peptide gene expression in cultured neonatal rat myocytes. Hypertension. 1999;34(6):1223–31.

    PubMed  CAS  Google Scholar 

  70. Lenihan DJMM, Baysinger K, Steinert D, Fayad L, Yusuf SW, Chiu A, et al. Early detection of cardiotoxicity during chemotherapy using biomarkers. J Clin Oncol. 2007;25(18S):19521.

    Google Scholar 

  71. Skovgaard D, Hasbak P, Kjaer A. BNP predicts chemotherapy-related cardiotoxicity and death: comparison with gated equilibrium radionuclide ventriculography. PLoS One. 2014;9(5):e96736. doi:10.1371/journal.pone.0096736.

    PubMed  PubMed Central  Google Scholar 

  72. From AM, Maleszewski JJ, Rihal CS. Current status of endomyocardial biopsy. Mayo Clin Proc. 2011;86(11):1095–102. doi:10.4065/mcp.2011.0296.

    PubMed  PubMed Central  Google Scholar 

  73. Han J, Park Y, Lee H, Kang H, Kim H, Yang DH, et al. Complications of 2-D echocardiography guided transfemoral right ventricular endomyocardial biopsy. J Korean Med Sci. 2006;21(6):989–94.

    PubMed  PubMed Central  Google Scholar 

  74. Sloan KP, Bruce CJ, Oh JK, Rihal CS. Complications of echocardiography-guided endomyocardial biopsy. J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr. 2009;22(3):324.e1–4. doi:10.1016/j.echo.2008.12.023.

    Google Scholar 

  75. Cooper Jr LT. Role of left ventricular biopsy in the management of heart disease. Circulation. 2013;128(14):1492–4. doi:10.1161/CIRCULATIONAHA.113.005395.

    PubMed  Google Scholar 

  76. Meinardi MT, van der Graaf WT, van Veldhuisen DJ, Gietema JA, de Vries EG, Sleijfer DT. Detection of anthracycline-induced cardiotoxicity. Cancer Treat Rev. 1999;25(4):237–47. doi:10.1053/ctrv.1999.0128.

    PubMed  CAS  Google Scholar 

  77. Cooper LT, Baughman KL, Feldman AM, Frustaci A, Jessup M, Kuhl U, et al. The role of endomyocardial biopsy in the management of cardiovascular disease: a scientific statement from the American Heart Association, the American College of Cardiology, and the European Society of Cardiology. Endorsed by the Heart Failure Society of America and the Heart Failure Association of the European Society of Cardiology. J Am Coll Cardiol. 2007;50(19):1914–31. doi:10.1016/j.jacc.2007.09.008.

    PubMed  Google Scholar 

  78. Kalam K, Marwick TH. Role of cardioprotective therapy for prevention of cardiotoxicity with chemotherapy: a systematic review and meta-analysis. Eur J Cancer. 2013;49(13):2900–9. doi:10.1016/j.ejca.2013.04.030. This study provides a metaanalysis of cardioprotective agents in cardioprotection of chemotherapycardiotoxicity.

    PubMed  CAS  Google Scholar 

  79. Brugts JJ, Yetgin T, Hoeks SE, Gotto AM, Shepherd J, Westendorp RG, et al. The benefits of statins in people without established cardiovascular disease but with cardiovascular risk factors: meta-analysis of randomised controlled trials. BMJ. 2009;338:b2376. doi:10.1136/bmj.b2376.

    PubMed  CAS  PubMed Central  Google Scholar 

  80. Yoshida M, Shiojima I, Ikeda H, Komuro I. Chronic doxorubicin cardiotoxicity is mediated by oxidative DNA damage-ATM-p53-apoptosis pathway and attenuated by pitavastatin through the inhibition of Rac1 activity. J Mol Cell Cardiol. 2009;47(5):698–705. doi:10.1016/j.yjmcc.2009.07.024.

    PubMed  CAS  Google Scholar 

  81. Riad A, Bien S, Westermann D, Becher PM, Loya K, Landmesser U, et al. Pretreatment with statin attenuates the cardiotoxicity of Doxorubicin in mice. Cancer Res. 2009;69(2):695–9. doi:10.1158/0008-5472.CAN-08-3076.

    PubMed  CAS  Google Scholar 

  82. Iliskovic N, Singal PK. Lipid lowering: an important factor in preventing adriamycin-induced heart failure. Am J Pathol. 1997;150(2):727–34.

    PubMed  CAS  PubMed Central  Google Scholar 

  83. Cheng CF, Juan SH, Chen JJ, Chao YC, Chen HH, Lian WS, et al. Pravastatin attenuates carboplatin-induced cardiotoxicity via inhibition of oxidative stress associated apoptosis. Apoptosis Int J Program Cell Death. 2008;13(7):883–94. doi:10.1007/s10495-008-0214-9.

    CAS  Google Scholar 

  84. Seicean S, Seicean A, Plana JC, Budd GT, Marwick TH. Effect of statin therapy on the risk for incident heart failure in patients with breast cancer receiving anthracycline chemotherapy: an observational clinical cohort study. J Am Coll Cardiol. 2012;60(23):2384–90. doi:10.1016/j.jacc.2012.07.067.

    PubMed  CAS  Google Scholar 

  85. Acar Z, Kale A, Turgut M, Demircan S, Durna K, Demir S, et al. Efficiency of atorvastatin in the protection of anthracycline-induced cardiomyopathy. J Am Coll Cardiol. 2011;58(9):988–9. doi:10.1016/j.jacc.2011.05.025.

    PubMed  Google Scholar 

  86. Spallarossa P, Garibaldi S, Altieri P, Fabbi P, Manca V, Nasti S, et al. Carvedilol prevents doxorubicin-induced free radical release and apoptosis in cardiomyocytes in vitro. J Mol Cell Cardiol. 2004;37(4):837–46. doi:10.1016/j.yjmcc.2004.05.024.

    PubMed  CAS  Google Scholar 

  87. de Nigris F, Rienzo M, Schiano C, Fiorito C, Casamassimi A, Napoli C. Prominent cardioprotective effects of third generation beta blocker nebivolol against anthracycline-induced cardiotoxicity using the model of isolated perfused rat heart. Eur J Cancer. 2008;44(3):334–40. doi:10.1016/j.ejca.2007.12.010.

    PubMed  Google Scholar 

  88. Matsui H, Morishima I, Numaguchi Y, Toki Y, Okumura K, Hayakawa T. Protective effects of carvedilol against doxorubicin-induced cardiomyopathy in rats. Life Sci. 1999;65(12):1265–74.

    PubMed  CAS  Google Scholar 

  89. Fujita N, Hiroe M, Ohta Y, Horie T, Hosoda S. Chronic effects of metoprolol on myocardial beta-adrenergic receptors in doxorubicin-induced cardiac damage in rats. J Cardiovasc Pharmacol. 1991;17(4):656–61.

    PubMed  CAS  Google Scholar 

  90. Seicean S, Seicean A, Alan N, Plana JC, Budd GT, Marwick TH. Cardioprotective effect of beta-adrenoceptor blockade in patients with breast cancer undergoing chemotherapy: follow-up study of heart failure. Circ Heart Fail. 2013;6(3):420–6. doi:10.1161/CIRCHEARTFAILURE.112.000055.

    PubMed  CAS  Google Scholar 

  91. Kalay N, Basar E, Ozdogru I, Er O, Cetinkaya Y, Dogan A, et al. Protective effects of carvedilol against anthracycline-induced cardiomyopathy. J Am Coll Cardiol. 2006;48(11):2258–62. doi:10.1016/j.jacc.2006.07.052.

    PubMed  CAS  Google Scholar 

  92. Bosch X, Rovira M, Sitges M, Domenech A, Ortiz-Perez JT, de Caralt TM, et al. Enalapril and carvedilol for preventing chemotherapy-induced left ventricular systolic dysfunction in patients with malignant hemopathies: the OVERCOME trial (preventiOn of left Ventricular dysfunction with Enalapril and caRvedilol in patients submitted to intensive ChemOtherapy for the treatment of Malignant hEmopathies). J Am Coll Cardiol. 2013;61(23):2355–62. doi:10.1016/j.jacc.2013.02.072. This is the first big-scale randomized controlled trial that provided insight into prophylaxis of chemotherapy-induced cardiotoxicity with ACE inhibitors and carvedilol.

    PubMed  CAS  Google Scholar 

  93. Oliveira PJ, Bjork JA, Santos MS, Leino RL, Froberg MK, Moreno AJ, et al. Carvedilol-mediated antioxidant protection against doxorubicin-induced cardiac mitochondrial toxicity. Toxicol Appl Pharmacol. 2004;200(2):159–68. doi:10.1016/j.taap.2004.04.005.

    PubMed  CAS  Google Scholar 

  94. Georgakopoulos P, Roussou P, Matsakas E, Karavidas A, Anagnostopoulos N, Marinakis T, et al. Cardioprotective effect of metoprolol and enalapril in doxorubicin-treated lymphoma patients: a prospective, parallel-group, randomized, controlled study with 36-month follow-up. Am J Hematol. 2010;85(11):894–6. doi:10.1002/ajh.21840.

    PubMed  CAS  Google Scholar 

  95. Gorkin L, Norvell NK, Rosen RC, Charles E, Shumaker SA, McIntyre KM, et al. Assessment of quality of life as observed from the baseline data of the Studies of Left Ventricular Dysfunction (SOLVD) trial quality-of-life substudy. Am J Cardiol. 1993;71(12):1069–73.

    PubMed  CAS  Google Scholar 

  96. Rutherford JD, Pfeffer MA, Moye LA, Davis BR, Flaker GC, Kowey PR, et al. Effects of captopril on ischemic events after myocardial infarction. Results of the survival and ventricular enlargement trial. SAVE Investigators. Circulation. 1994;90(4):1731–8.

    PubMed  CAS  Google Scholar 

  97. Sacco G, Bigioni M, Evangelista S, Goso C, Manzini S, Maggi CA. Cardioprotective effects of zofenopril, a new angiotensin-converting enzyme inhibitor, on doxorubicin-induced cardiotoxicity in the rat. Eur J Pharmacol. 2001;414(1):71–8.

    PubMed  CAS  Google Scholar 

  98. Tokudome T, Mizushige K, Noma T, Manabe K, Murakami K, Tsuji T, et al. Prevention of doxorubicin (adriamycin)-induced cardiomyopathy by simultaneous administration of angiotensin-converting enzyme inhibitor assessed by acoustic densitometry. J Cardiovasc Pharmacol. 2000;36(3):361–8.

    PubMed  CAS  Google Scholar 

  99. Ibrahim MA, Ashour OM, Ibrahim YF, El-Bitar HI, Gomaa W, Abdel-Rahim SR. Angiotensin-converting enzyme inhibition and angiotensin AT(1)-receptor antagonism equally improve doxorubicin-induced cardiotoxicity and nephrotoxicity. Pharmacol Res Off J Ital Pharmacol Soc. 2009;60(5):373–81. doi:10.1016/j.phrs.2009.05.007.

    CAS  Google Scholar 

  100. Cohn JN. Structural basis for heart failure. Ventricular remodeling and its pharmacological inhibition. Circulation. 1995;91(10):2504–7.

    PubMed  CAS  Google Scholar 

  101. Hiona A, Lee AS, Nagendran J, Xie X, Connolly AJ, Robbins RC, et al. Pretreatment with angiotensin-converting enzyme inhibitor improves doxorubicin-induced cardiomyopathy via preservation of mitochondrial function. J Thorac Cardiovasc Surg. 2011;142(2):396–403.e3. doi:10.1016/j.jtcvs.2010.07.097.

    PubMed  CAS  PubMed Central  Google Scholar 

  102. Cardinale D, Colombo A, Sandri MT, Lamantia G, Colombo N, Civelli M, et al. Prevention of high-dose chemotherapy-induced cardiotoxicity in high-risk patients by angiotensin-converting enzyme inhibition. Circulation. 2006;114(23):2474–81. doi:10.1161/CIRCULATIONAHA.106.635144.

    PubMed  CAS  Google Scholar 

  103. Nakamae H, Tsumura K, Terada Y, Nakane T, Nakamae M, Ohta K, et al. Notable effects of angiotensin II receptor blocker, valsartan, on acute cardiotoxic changes after standard chemotherapy with cyclophosphamide, doxorubicin, vincristine, and prednisolone. Cancer. 2005;104(11):2492–8. doi:10.1002/cncr.21478.

    PubMed  CAS  Google Scholar 

  104. Heck SL, Gulati G, Ree AH, Schulz-Menger J, Gravdehaug B, Rosjo H, et al. Rationale and design of the prevention of cardiac dysfunction during an Adjuvant Breast Cancer Therapy (PRADA) Trial. Cardiology. 2012;123(4):240–7. doi:10.1159/000343622.

    PubMed  CAS  Google Scholar 

  105. Seifert CF, Nesser ME, Thompson DF. Dexrazoxane in the prevention of doxorubicin-induced cardiotoxicity. Ann Pharmacother. 1994;28(9):1063–72.

    PubMed  CAS  Google Scholar 

  106. Smith LA, Cornelius VR, Plummer CJ, Levitt G, Verrill M, Canney P, et al. Cardiotoxicity of anthracycline agents for the treatment of cancer: systematic review and meta-analysis of randomised controlled trials. BMC Cancer. 2010;10:337. doi:10.1186/1471-2407-10-337.

    PubMed  PubMed Central  Google Scholar 

  107. Seymour L, Bramwell V, Moran LA. Use of dexrazoxane as a cardioprotectant in patients receiving doxorubicin or epirubicin chemotherapy for the treatment of cancer. The Provincial Systemic Treatment Disease Site Group. Cancer Prev Control: CPC = Prevention Control Cancerologie: PCC. 1999;3(2):145–59.

    CAS  Google Scholar 

  108. Swain SM. Adult multicenter trials using dexrazoxane to protect against cardiac toxicity. Semin Oncol. 1998;25(4 Suppl 10):43–7.

    PubMed  CAS  Google Scholar 

  109. Tebbi CK, London WB, Friedman D, Villaluna D, De Alarcon PA, Constine LS, et al. Dexrazoxane-associated risk for acute myeloid leukemia/myelodysplastic syndrome and other secondary malignancies in pediatric Hodgkin's disease. J Clin Oncol Off J Am Soc Clin Oncol. 2007;25(5):493–500. doi:10.1200/JCO.2005.02.3879.

    CAS  Google Scholar 

  110. Lopez M, Vici P, Di Lauro K, Conti F, Paoletti G, Ferraironi A, et al. Randomized prospective clinical trial of high-dose epirubicin and dexrazoxane in patients with advanced breast cancer and soft tissue sarcomas. J Clin Oncol Off J Am Soc Clin Oncol. 1998;16(1):86–92.

    CAS  Google Scholar 

  111. Venturini M, Michelotti A, Del Mastro L, Gallo L, Carnino F, Garrone O, et al. Multicenter randomized controlled clinical trial to evaluate cardioprotection of dexrazoxane versus no cardioprotection in women receiving epirubicin chemotherapy for advanced breast cancer. J Clin Oncol Off J Am Soc Clin Oncol. 1996;14(12):3112–20.

    CAS  Google Scholar 

  112. Walker JR, Sharma A, Lytwyn M, Bohonis S, Thliveris J, Singal PK, et al. The cardioprotective role of probucol against anthracycline and trastuzumab-mediated cardiotoxicity. J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr. 2011;24(6):699–705. doi:10.1016/j.echo.2011.01.018.

    Google Scholar 

  113. van Dalen EC, Caron HN, Dickinson HO, Kremer LC. Cardioprotective interventions for cancer patients receiving anthracyclines. Cochrane Database Syst Rev. 2008;2, CD003917. doi:10.1002/14651858.CD003917.pub3.

    PubMed  Google Scholar 

  114. Ascensao A, Ferreira R, Magalhaes J. Exercise-induced cardioprotection–biochemical, morphological and functional evidence in whole tissue and isolated mitochondria. Int J Cardiol. 2007;117(1):16–30. doi:10.1016/j.ijcard.2006.04.076.

    PubMed  Google Scholar 

  115. Freedman SB, Richmond DR, Kelly DT. Long-term follow-up of verapamil and nitrate treatment for coronary artery spasm. Am J Cardiol. 1982;50(4):711–5.

    PubMed  CAS  Google Scholar 

  116. Antman E, Muller J, Goldberg S, MacAlpin R, Rubenfire M, Tabatznik B, et al. Nifedipine therapy for coronary-artery spasm. Experience in 127 patients. N Engl J Med. 1980;302(23):1269–73.

    PubMed  CAS  Google Scholar 

  117. Stone NJ, Robinson J, Lichtenstein AH, Merz CN, Blum CB, Eckel RH, et al. ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2013. doi:10.1161/01.cir.0000437738.63853.7a.

    Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Guilherme H. Oliveira, Marwan Qattan, Sadeer Al-Kindi and Ahmad Younes have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilherme H. Oliveira.

Additional information

Sadeer Al-Kindi and Ahmad Younes contributed to this work equally.

This article is part of the Topical Collection on Heart Failure Prevention

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Kindi, S., Younes, A., Qattan, M. et al. Preemptive Cardioprotective Strategies in Patients Receiving Chemotherapy. Curr Cardiovasc Risk Rep 8, 406 (2014). https://doi.org/10.1007/s12170-014-0406-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12170-014-0406-5

Keywords

Navigation