Skip to main content
Log in

Rapid Methods for Quality Assurance of Foods: the Next Decade with Polymerase Chain Reaction (PCR)-Based Food Monitoring

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

Microbiological analysis is an integral part of food quality control, as well as of the management of food chain safety. Microbiological testing of foodstuffs complements the preventive approach to food safety activities based mainly on implementation and application of the concept of Hazard Analysis and Critical Control Points (HACCP). Traditional microbiological methods are powerful but lengthy and cumbersome and therefore not fully compatible with current requirements. Even more, pathogens exist that are fastidious to cultivate or uncultivable at all. Besides immunological tests, molecular methods, specifically those based on polymerase chain reaction (PCR), are available options to meet industry and enforcement needs. The clear advantage of PCR over all other rapid methods is the striking analytical principle that is based on amplification of DNA, a molecule being present in every cell prone to multiply. Just by changing primers and probes, different genomes such as bacteria, viruses or parasites can be detected. A second advantage is the ability to both detect and quantify a biotic contaminant. Some previously identified obstacles of implementation of molecular methods have already been overcome. Technical measures became available that improved robustness of molecular methods, and equipment and biochemicals became much more affordable. Unfortunately, molecular methods suffer from certain drawbacks that hamper their full integration to food safety control. Those encompass a suitable sample pre-treatment especially for a quantitative extraction of bacteria and viruses from solid foods, limited availability of appropriate controls to evaluate the effectiveness of the analytical procedure, the current inability of molecular methods to distinguish DNA from viable cells and DNA from dead or non-cultivable cells, and the slow progress of international harmonisation and standardisation, which limit full acceptance of PCR-based methods in food control. The aim of this review is to describe the context and the prospects of PCR-based methods, as well as trends in research and development aimed at solving the next decade challenges in order to achieve full integration of molecular methods in food safety control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdulmawjood A, Bulte M, Cook N, Roth S, Schonenbrucher H, Hoorfar J (2003) Toward an international standard for PCR-based detection of Escherichia coli O157. Part 1. Assay development and multi-center validation. J Microbiol Methods 55(3):775–786

    CAS  Google Scholar 

  • Abdulmawjood A, Bulte M, Roth S, Schonenbrucher H, Cook N, D’Agostino M, Burkhard M, Jordan K, Pelkonen S, Hoorfar J (2004) Toward an international standard for PCR-based detection of foodborne Escherichia coli O157: validation of the PCR-based method in a multicenter interlaboratory trial. J AOAC Int 87(4):856–860

    CAS  Google Scholar 

  • Amagliani G, Petruzzelli A, Omiccioli E, Tonucci F, Magnani M, Brandi G (2012) Microbiological surveillance of a bovine raw milk farm through multiplex real-time PCR. Foodborne Pathog Dis 9(5):406–411. doi:10.1089/fpd.2011.1041

    CAS  Google Scholar 

  • Anonymous (2010) Moniqa project- Executive summary 2010. http://www.moniqa.eu/sites/moniqa.eu/files/pagefiles/exec_glossy_10_lr.pdf

  • Aprodu I, Walcher G, Schelin J, Hein I, Norling B, Radstrom P, Nicolau A, Wagner M (2011) Advanced sample preparation for the molecular quantification of Staphylococcus aureus in artificially and naturally contaminated milk. Int J Food Microbiol 145(Suppl 1):S61–S65. doi:10.1016/j.ijfoodmicro.2010.09.018

    CAS  Google Scholar 

  • Bidawid S, Farber JM, Sattar SA (2000) Rapid concentration and detection of hepatitis A virus from lettuce and strawberries. J Virol Methods 88(2):175–185

    CAS  Google Scholar 

  • Birch L, Dawson CE, Cornett JH, Keer JT (2001) A comparison of nucleic acid amplification techniques for the assessment of bacterial viability. Lett Appl Microbiol 33(4):296–301

    CAS  Google Scholar 

  • Brehm-Stecher B, Young C, Jaykus LA, Tortorello ML (2009) Sample preparation: the forgotten beginning. J Food Prot 72(8):1774–1789

    CAS  Google Scholar 

  • Brezna B, Hudecova L, Kuchta T (2006) Detection of pea in food by real-time polymerase chain reaction (PCR). Eur Food Res Technol 222:600–603

    CAS  Google Scholar 

  • Bustin SA (2010) Why the need for qPCR publication guidelines?—the case for MIQE. Methods 50(4):217–226. doi:10.1016/j.ymeth.2009.12.006

    CAS  Google Scholar 

  • Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622. doi:10.1373/clinchem.2008.112797

    CAS  Google Scholar 

  • Butot S, Putallaz T, Croquet C, Lamothe G, Meyer R, Joosten H, Sanchez G (2007a) Attachment of enteric viruses to bottles. Appl Environ Microbiol 73(16):5104–5110. doi:10.1128/AEM.00450-07

    CAS  Google Scholar 

  • Butot S, Putallaz T, Sanchez G (2007b) Procedure for rapid concentration and detection of enteric viruses from berries and vegetables. Appl Environ Microbiol 73(1):186–192. doi:10.1128/AEM.01248-06

    CAS  Google Scholar 

  • Butot S, Patallaz T, Sanchez G (2013) Improvement of procedure for HAV detection in bottled water. Food Anal Methods 6:270–273

    Google Scholar 

  • Chancellor DD, Tyagi S, Bazaco MC, Bacvinskas S, Chancellor MB, Dato VM, de Miguel F (2006) Green onions: potential mechanism for hepatitis A contamination. J Food Prot 69(6):1468–1472

    Google Scholar 

  • CodexAlimentarius (2012) Proposed draft revision of the principles for the establishment and application of microbiological criteria for foods. FAO/OMS, Rome

    Google Scholar 

  • Costafreda MI, Bosch A, Pinto RM (2006) Development, evaluation, and standardization of a real-time TaqMan reverse transcription-PCR assay for quantification of hepatitis A virus in clinical and shellfish samples. Appl Environ Microbiol 72(6):3846–3855. doi:10.1128/AEM.02660-05

    CAS  Google Scholar 

  • Coudray-Meunier C, Fraisse A, Martin-Latil S, Guillier L, Perelle S (2013) Discrimination of infectious hepatitis A virus and rotavirus by combining dyes and surfactants with RT-qPCR. BMC Microbiol 13:216. doi:10.1186/1471-2180-13-216

    Google Scholar 

  • Coutard F, Pommepuy M, Loaec S, Hervio-Heath D (2005) mRNA detection by reverse transcription-PCR for monitoring viability and potential virulence in a pathogenic strain of Vibrio parahaemolyticus in viable but nonculturable state. J Appl Microbiol 98(4):951–961. doi:10.1111/j.1365-2672.2005.02534.x

    CAS  Google Scholar 

  • Croci L, Dubois E, Cook N, De Medici D, Schultz AC, China B, Rutjes SA, Hoorfar H, Van der Poel WH (2008) Current methods for extraction and concentration of enteric viruses from fresh fruit and vegetables: towards international standards. Food Anal Methods 1:73–84

    Google Scholar 

  • D’Agostino M, Wagner M, Vazquez-Boland JA, Kuchta T, Karpiskova R, Hoorfar J, Novella S, Scortti M, Ellison J, Murray A, Fernandes I, Kuhn M, Pazlarova J, Heuvelink A, Cook N (2004) A validated PCR-based method to detect Listeria monocytogenes using raw milk as a food model—towards an international standard. J Food Prot 67(8):1646–1655

    Google Scholar 

  • D’Urso OF, Poltronieri P, Marsigliante S, Storelli C, Hernandez M, Rodriguez-Lazaro D (2009) A filtration-based real-time PCR method for the quantitative detection of viable Salmonella enterica and Listeria monocytogenes in food samples. Food Microbiol 26(3):311–316. doi:10.1016/j.fm.2008.12.006

    Google Scholar 

  • De Medici D, Croci L, Di Pasquale S, Fiore A, Toti L (2001) Detecting the presence of infectious hepatitis A virus in molluscs positive to RT-nested-PCR. Lett Appl Microbiol 33(5):362–366

    Google Scholar 

  • De Medici D, Anniballi F, Wyatt GM, Lindstrom M, Messelhausser U, Aldus CF, Delibato E, Korkeala H, Peck MW, Fenicia L (2009) Multiplex PCR for detection of botulinum neurotoxin-producing clostridia in clinical, food, and environmental samples. Appl Environ Microbiol 75(20):6457–6461. doi:10.1128/AEM.00805-09

    Google Scholar 

  • Delibato E, Rodriguez Lazaro D, Gianfranceschi M, De Cesare A, Comin D, Gattuso A, Hernandez M, Sonnessa M, Pasquali F, Sreter-Lancz Z, Saiz-Abajo MJ, Perez-De-Juan J, Butron J, Prukner-Radovcic E, Horvatek Tomic D, Johannessen GS, Jakociune D, Olsen JE, Chemaly M, Le Gall F, Gonzalez-Garcia P, Lettini AA, Lukac M, Quesne S, Zampieron C, De Santis P, Lovari S, Bertasi B, Pavoni E, Proroga YT, Capuano F, Manfreda G, De Medici D (2014) European validation of real-time PCR method for detection of Salmonella spp. in pork meat. Int J Food Microbiol. doi:10.1016/j.ijfoodmicro.2014.01.005

    Google Scholar 

  • Di Pasquale S, Paniconi M, De Medici D, Suffredini E, Croci L (2009) Duplex real time PCR for the detection of hepatitis A virus in shellfish using Feline Calicivirus as a process control. J Virol Methods 163(1):96–100. doi:10.1016/j.jviromet.2009.09.003

    Google Scholar 

  • Di Pasquale S, Paniconi M, Auricchio B, Orefice L, Schultz AC, De Medici D (2010) Comparison of different concentration methods for the detection of hepatitis A virus and calicivirus from bottled natural mineral waters. J Virol Methods 165(1):57–63. doi:10.1016/j.jviromet.2010.01.003

    Google Scholar 

  • Duizer E, Schwab KJ, Neill FH, Atmar RL, Koopmans MP, Estes MK (2004) Laboratory efforts to cultivate noroviruses. J Gen Virol 85(Pt 1):79–87

    CAS  Google Scholar 

  • EFSA (2011) Scientific opinion on an update on the present knowledge on the occurrence and control of foodborne viruses. EFSA J 9(7):2190

    Google Scholar 

  • El-Senousy WM, Costafreda MI, Pinto RM, Bosch A (2013) Method validation for norovirus detection in naturally contaminated irrigation water and fresh produce. Int J Food Microbiol 167(1):74–79. doi:10.1016/j.ijfoodmicro.2013.06.023

    CAS  Google Scholar 

  • Fach P, Micheau P, Mazuet C, Perelle S, Popoff M (2009) Development of real-time PCR tests for detecting botulinum neurotoxins A, B, E, F producing Clostridium botulinum, Clostridium baratii and Clostridium butyricum. J Appl Microbiol 107(2):465–473. doi:10.1111/j.1365-2672.2009.04215.x

    CAS  Google Scholar 

  • Fenicia L, Fach P, van Rotterdam BJ, Anniballi F, Segerman B, Auricchio B, Delibato E, Hamidjaja RA, Wielinga PR, Woudstra C, Agren J, De Medici D, Knutsson R (2011) Towards an international standard for detection and typing botulinum neurotoxin-producing Clostridia types A, B, E and F in food, feed and environmental samples: a European ring trial study to evaluate a real-time PCR assay. Int J Food Microbiol 145(Suppl 1):S152–S157. doi:10.1016/j.ijfoodmicro.2011.02.001

    Google Scholar 

  • Flekna G, Stefanic P, Wagner M, Smulders FJ, Mozina SS, Hein I (2007) Insufficient differentiation of live and dead Campylobacter jejuni and Listeria monocytogenes cells by ethidium monoazide (EMA) compromises EMA/real-time PCR. Res Microbiol 158(5):405–412. doi:10.1016/j.resmic.2007.02.008

    CAS  Google Scholar 

  • Fricker M, Messelhausser U, Busch U, Scherer S, Ehling-Schulz M (2007) Diagnostic real-time PCR assays for the detection of emetic Bacillus cereus strains in foods and recent food-borne outbreaks. Appl Environ Microbiol 73(6):1892–1898. doi:10.1128/AEM.02219-06

    CAS  Google Scholar 

  • Fukushima H, Katsube K, Hata Y, Kishi R, Fujiwara S (2007) Rapid separation and concentration of food-borne pathogens in food samples prior to quantification by viable-cell counting and real-time PCR. Appl Environ Microbiol 73(1):92–100. doi:10.1128/AEM.01772-06

    CAS  Google Scholar 

  • Gianfranceschi MV, Rodriguez-Lazaro D, Hernandez M, Gonzalez-Garcia P, Comin D, Gattuso A, Delibato E, Sonnessa M, Pasquali F, Prencipe V, Sreter-Lancz Z, Saiz-Abajo MJ, Perez-De-Juan J, Butron J, Kozacinski L, Tomic DH, Zdolec N, Johannessen GS, Jakociune D, Olsen JE, De Santis P, Lovari S, Bertasi B, Pavoni E, Paiusco A, De Cesare A, Manfreda G, De Medici D (2014) European validation of a real-time PCR-based method for detection of Listeria monocytogenes in soft cheese. Int J Food Microbiol. doi:10.1016/j.ijfoodmicro.2013.12.021

    Google Scholar 

  • Gonzalez-Escalona N, Hammack TS, Russell M, Jacobson AP, De Jesus AJ, Brown EW, Lampel KA (2009) Detection of live Salmonella sp. cells in produce by a TaqMan-based quantitative reverse transcriptase real-time PCR targeting invA mRNA. Appl Environ Microbiol 75(11):3714–3720. doi:10.1128/AEM.02686-08

    CAS  Google Scholar 

  • Graiver DA, Saunders SE, Topliff CL, Kelling CL, Bartelt-Hunt SL (2010) Ethidium monoazide does not inhibit RT-PCR amplification of nonviable avian influenza RNA. J Virol Methods 164(1–2):51–54. doi:10.1016/j.jviromet.2009.11.024

    CAS  Google Scholar 

  • Greisen K, Loeffelholz M, Purohit A, Leong D (1994) PCR primers and probes for the 16S rRNA gene of most species of pathogenic bacteria, including bacteria found in cerebrospinal fluid. J Clin Microbiol 32(2):335–351

    CAS  Google Scholar 

  • Havelaar AH, Brul S, de Jong A, de Jonge R, Zwietering MH, Ter Kuile BH (2010) Future challenges to microbial food safety. Int J Food Microbiol 139(Suppl 1):S79–S94. doi:10.1016/j.ijfoodmicro.2009.10.015

    Google Scholar 

  • Hellyer TJ, DesJardin LE, Teixeira L, Perkins MD, Cave MD, Eisenach KD (1999) Detection of viable Mycobacterium tuberculosis by reverse transcriptase-strand displacement amplification of mRNA. J Clin Microbiol 37(3):518–523

    CAS  Google Scholar 

  • Hofstra H, van der Vossen JM, van der Plas J (1994) Microbes in food processing technology. FEMS Microbiol Rev 15(2–3):175–183

    CAS  Google Scholar 

  • Hoorfar J (2011) Rapid detection, characterization, and enumeration of foodborne pathogens. APMIS Suppl 133:1–24. doi:10.1111/j.1600-0463.2011.02767.x

    CAS  Google Scholar 

  • Hoorfar J, Malorny B, Abdulmawjood A, Cook N, Wagner M, Fach P (2004a) Practical considerations in design of internal amplification controls for diagnostic PCR assays. J Clin Microbiol 42(5):1863–1868

    CAS  Google Scholar 

  • Hoorfar J, Wolffs P, Radstrom P (2004b) Diagnostic PCR: validation and sample preparation are two sides of the same coin. APMIS 112(11–12):808–814

    CAS  Google Scholar 

  • Huang P, Farkas T, Zhong W, Tan M, Thornton S, Morrow AL, Jiang X (2005) Norovirus and histo-blood group antigens: demonstration of a wide spectrum of strain specificities and classification of two major binding groups among multiple binding patterns. J Virol 79(11):6714–6722. doi:10.1128/JVI.79.11.6714-6722.2005

    CAS  Google Scholar 

  • Hyeon JY, Chon JW, Park C, Lee JB, Choi IS, Kim MS, Seo KH (2011) Rapid detection method for hepatitis A virus from lettuce by a combination of filtration and integrated cell culture-real-time reverse transcription PCR. J Food Prot 74(10):1756–1761. doi:10.4315/0362-028X.JFP-11-155

    CAS  Google Scholar 

  • ISO/IEC (2004) ISO/IEC Guide 2:2004, Standardization and related activities—general vocabulary

  • Jakociune D, Pasquali F, da Silva CS, Lofstrom C, Hoorfar J, Klein G, Manfreda G, Olsen JE (2013) Enumeration of salmonellae in table eggs, pasteurized egg products, and egg-containing dishes by using quantitative real-time PCR. Appl Environ Microbiol 80(5):1616–1622. doi:10.1128/AEM.03360-13

    Google Scholar 

  • Josefsen MH, Lambertz ST, Jensen S, Hoorfar J (2003) Food-PCR. Validation and standardization of diagnostic PCR for detection of Yersinia enterocolitica and other foodborne pathogens. Adv Exp Med Biol 529:443–449. doi:10.1007/0-306-48416-1_88

    Google Scholar 

  • Josefsen MH, Cook N, D’Agostino M, Hansen F, Wagner M, Demnerova K, Heuvelink AE, Tassios PT, Lindmark H, Kmet V, Barbanera M, Fach P, Loncarevic S, Hoorfar J (2004) Validation of a PCR-based method for detection of food-borne thermotolerant campylobacters in a multicenter collaborative trial. Appl Environ Microbiol 70(7):4379–4383. doi:10.1128/AEM.70.7.4379-4383.2004

    CAS  Google Scholar 

  • Josefsen MH, Lofstrom C, Hansen TB, Christensen LS, Olsen JE, Hoorfar J (2010) Rapid quantification of viable Campylobacter bacteria on chicken carcasses, using real-time PCR and propidium monoazide treatment, as a tool for quantitative risk assessment. Appl Environ Microbiol 76(15):5097–5104. doi:10.1128/AEM.00411-10

    CAS  Google Scholar 

  • Jothikumar N, Lowther JA, Henshilwood K, Lees DN, Hill VR, Vinje J (2005) Rapid and sensitive detection of noroviruses by using TaqMan-based one-step reverse transcription-PCR assays and application to naturally contaminated shellfish samples. Appl Environ Microbiol 71(4):1870–1875. doi:10.1128/AEM.71.4.1870-1875.2005

    CAS  Google Scholar 

  • Kim SY, Ko G (2012) Using propidium monoazide to distinguish between viable and nonviable bacteria, MS2 and murine norovirus. Lett Appl Microbiol 55(3):182–188. doi:10.1111/j.1472-765X.2012.03276.x

    CAS  Google Scholar 

  • Kim K, Katayama H, Kitajima M, Tohya Y, Ohgaki S (2011) Development of a real-time RT-PCR assay combined with ethidium monoazide treatment for RNA viruses and its application to detect viral RNA after heat exposure. Water Sci Technol 63(3):502–507. doi:10.2166/wst.2011.249

    CAS  Google Scholar 

  • Knight A, Li D, Uyttendaele M, Jaykus LA (2012) A critical review of methods for detecting human noroviruses and predicting their infectivity. Crit Rev Microbiol. doi:10.3109/1040841X.2012.709820

    Google Scholar 

  • Knutsson R, van Rotterdam B, Fach P, De Medici D, Fricker M, Lofstrom C, Agren J, Segerman B, Andersson G, Wielinga P, Fenicia L, Skiby J, Schultz AC, Ehling-Schulz M (2011) Accidental and deliberate microbiological contamination in the feed and food chains—how biotraceability may improve the response to bioterrorism. Int J Food Microbiol 145(Suppl 1):S123–S128. doi:10.1016/j.ijfoodmicro.2010.10.011

    Google Scholar 

  • Kobayashi S, Natori K, Takeda N, Sakae K (2004) Immunomagnetic capture rt-PCR for detection of norovirus from foods implicated in a foodborne outbreak. Microbiol Immunol 48(3):201–204

    CAS  Google Scholar 

  • Kobayashi H, Oethinger M, Tuohy MJ, Procop GW, Hall GS, Bauer TW (2009) Limiting false-positive polymerase chain reaction results: detection of DNA and mRNA to differentiate viable from dead bacteria. Diagn Microbiol Infect Dis 64(4):445–447. doi:10.1016/j.diagmicrobio.2009.04.004

    CAS  Google Scholar 

  • Konduru K, Kaplan GG (2006) Stable growth of wild-type hepatitis A virus in cell culture. J Virol 80(3):1352–1360. doi:10.1128/JVI.80.3.1352-1360.2006

    CAS  Google Scholar 

  • Koopmans M, von Bonsdorff CH, Vinje J, de Medici D, Monroe S (2002) Foodborne viruses. FEMS Microbiol Rev 26(2):187–205

    CAS  Google Scholar 

  • Kornacki JL, Johnson JL (2001) Enterobacteriacae, coliform and Escherichia coli as quality and safety indicators. Chapter 8. In: APHA (ed) Compendium of methods for the microbiological examination, 4th edn. APHA, Washington D.C

    Google Scholar 

  • Kramer N, Lofstrom C, Vigre H, Hoorfar J, Bunge C, Malorny B (2011) A novel strategy to obtain quantitative data for modelling: combined enrichment and real-time PCR for enumeration of salmonellae from pig carcasses. Int J Food Microbiol 145(Suppl 1):S86–S95. doi:10.1016/j.ijfoodmicro.2010.08.026

    Google Scholar 

  • Krascsenicsova K, Kaclikova E, Kuchta T (2006) Growth of Salmonella enterica in model mixed cultures during a two-step enrichment. New Microbiol 29(4):261–267

    CAS  Google Scholar 

  • Kuchta T, Knutsson R, Fiore A, Kudirkiene E, Höhl A, Horvatek Tomic D, Gotcheva V, Pöpping B, Scaramaglia S, To KA, Wagner M, De Medici D (2014) A decade with nucleic acid-based microbiological methods in safety control of foods. Lett Appl Microbiol. doi:10.1111/lam.12283

  • Lau HK, Clotilde LM, Lin AP, Hartman GL, Lauzon CR (2012) Comparison of IMS platforms for detecting and recovering Escherichia coli O157 and Shigella flexneri in foods. J Lab Autom. doi:10.1177/2211068212468583

    Google Scholar 

  • Le Guyader F, Loisy F, Atmar RL, Hutson AM, Estes MK, Ruvoen-Clouet N, Pommepuy M, Le Pendu J (2006) Norwalk virus-specific binding to oyster digestive tissues. Emerg Infect Dis 12(6):931–936

    Google Scholar 

  • Lees D (2010) International standardisation of a method for detection of human pathogenic viruses in molluscan shellfish. Food Anal Method 2010:146–155

    Google Scholar 

  • Lindstrom M, Keto R, Markkula A, Nevas M, Hielm S, Korkeala H (2001) Multiplex PCR assay for detection and identification of Clostridium botulinum types A, B, E, and F in food and fecal material. Appl Environ Microbiol 67(12):5694–5699. doi:10.1128/AEM.67.12.5694-5699.2001

    CAS  Google Scholar 

  • Liu Y, Wang C, Fung C, Li XF (2010) Quantification of viable but nonculturable Escherichia coli O157:H7 by targeting the rpoS mRNA. Anal Chem 82(7):2612–2615. doi:10.1021/ac1003272

    CAS  Google Scholar 

  • Lofstrom C, Hoorfar J (2012) Validation of an open-formula, diagnostic real-time PCR method for 20-h detection of Salmonella in animal feeds. Vet Microbiol 158(3–4):431–435. doi:10.1016/j.vetmic.2012.02.026

    CAS  Google Scholar 

  • Lombard B, Leclercq A (2009) The role of standardization bodies in the harmonization of analytical methods in food microbiology. In: Barbosa-Canovas G, Mortimer A, Lineback D, Spiess W, Buckle K, Colonna P (eds) Global issues in food science and technology. Elsevier Academic Press, Burlington, pp 177–197

    Google Scholar 

  • Lubeck PS, Cook N, Wagner M, Fach P, Hoorfar J (2003a) Toward an international standard for PCR-based detection of food-borne thermotolerant Campylobacters: validation in a multicenter collaborative trial. Appl Environ Microbiol 69(9):5670–5672

    CAS  Google Scholar 

  • Lubeck PS, Wolffs P, On SL, Ahrens P, Radstrom P, Hoorfar J (2003b) Toward an international standard for PCR-based detection of food-borne thermotolerant campylobacters: assay development and analytical validation. Appl Environ Microbiol 69(9):5664–5669

    CAS  Google Scholar 

  • Malorny B, Tassios PT, Radstrom P, Cook N, Wagner M, Hoorfar J (2003) Standardization of diagnostic PCR for the detection of foodborne pathogens. Int J Food Microbiol 83(1):39–48

    CAS  Google Scholar 

  • Malorny B, Cook N, D’Agostino M, De Medici D, Croci L, Abdulmawjood A, Fach P, Karpiskova R, Aymerich T, Kwaitek K, Hoorfar J (2004) Multicenter validation of PCR-based method for detection of Salmonella in chicken and pig samples. J AOAC Int 87(4):861–866

    CAS  Google Scholar 

  • Mancusi R, Trevisani M (2014) Enumeration of verocytotoxigenic Escherichia coli (VTEC) O157 and O26 in milk by quantitative PCR. Int J Food Microbiol. doi:10.1016/j.ijfoodmicro.2014.03.020

  • Mandal PK, Biswas AK, Choi K, Pal UK (2011) Method for rapid detection of foodborne pathogens: an overview. Am J Food Technol 6:87–102

    Google Scholar 

  • Manfreda G, De Cesare A (2014) The challenge of defining risk-based metrics to improve food safety: inputs from the BASELINE project. Int J Food Microbiol. doi:10.1016/j.ijfoodmicro.2014.01.013

    Google Scholar 

  • Mayrl E, Roeder B, Mester P, Wagner M, Rossmanith P (2009) Broad range evaluation of the matrix solubilization (matrix lysis) strategy for direct enumeration of foodborne pathogens by nucleic acids technologies. J Food Prot 72(6):1225–1233

    Google Scholar 

  • Mester P, Wagner M, Rossmanith P (2010a) Biased spectroscopic protein quantification in the presence of ionic liquids. Anal Bioanal Chem 397(5):1763–1766. doi:10.1007/s00216-010-3755-z

    CAS  Google Scholar 

  • Mester P, Wagner M, Rossmanith P (2010b) Use of ionic liquid-based extraction for recovery of Salmonella Typhimurium and Listeria monocytogenes from food matrices. J Food Prot 73(4):680–687

    Google Scholar 

  • Minami J, Yoshida K, Soejima T, Yaeshima T, Iwatsuki K (2010) New approach to use ethidium bromide monoazide as an analytical tool. J Appl Microbiol 109(3):900–909. doi:10.1111/j.1365-2672.2010.04716.x

    CAS  Google Scholar 

  • Minami J, Soejima T, Yaeshima T, Iwatsuki K (2012) Direct real-time PCR with ethidium monoazide: a method for the rapid detection of viable Cronobacter sakazakii in powdered infant formula. J Food Prot 75(9):1572–1579. doi:10.4315/0362-028X.JFP-12-015

    CAS  Google Scholar 

  • Morton V, Jean J, Farber J, Mattison K (2009) Detection of noroviruses in ready-to-eat foods by using carbohydrate-coated magnetic beads. Appl Environ Microbiol 75(13):4641–4643. doi:10.1128/AEM.00202-09

    CAS  Google Scholar 

  • Nocker A, Camper AK (2009) Novel approaches toward preferential detection of viable cells using nucleic acid amplification techniques. FEMS Microbiol Lett 291(2):137–142. doi:10.1111/j.1574-6968.2008.01429.x

    CAS  Google Scholar 

  • Nocker A, Cheung CY, Camper AK (2006) Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells. J Microbiol Methods 67(2):310–320. doi:10.1016/j.mimet.2006.04.015

    CAS  Google Scholar 

  • Nocker A, Sossa-Fernandez P, Burr MD, Camper AK (2007) Use of propidium monoazide for live/dead distinction in microbial ecology. Appl Environ Microbiol 73(16):5111–5117. doi:10.1128/AEM.02987-06

    CAS  Google Scholar 

  • Nogva HK, Dromtorp SM, Nissen H, Rudi K (2003) Ethidium monoazide for DNA-based differentiation of viable and dead bacteria by 5′-nuclease PCR. Biotechniques 34(4):804–808, 810, 812-803

    CAS  Google Scholar 

  • Nuanualsuwan S, Cliver DO (2002) Pretreatment to avoid positive RT-PCR results with inactivated viruses. J Virol Methods 104(2):217–225

    CAS  Google Scholar 

  • Nuanualsuwan S, Cliver DO (2003) Capsid functions of inactivated human picornaviruses and feline calicivirus. Appl Environ Microbiol 69(1):350–357

    CAS  Google Scholar 

  • Nuanualsuwan S, Mariam T, Himathongkham S, Cliver DO (2002) Ultraviolet inactivation of feline calicivirus, human enteric viruses and coliphages. Photochem Photobiol 76(4):406–410

    CAS  Google Scholar 

  • Ogorzaly L, Bertrand I, Paris M, Maul A, Gantzer C (2010) Occurrence, survival, and persistence of human adenoviruses and F-specific RNA phages in raw groundwater. Appl Environ Microbiol 76(24):8019–8025. doi:10.1128/AEM.00917-10

    CAS  Google Scholar 

  • Ogorzaly L, Bonot S, Moualij BE, Zorzi W, Cauchie HM (2013) Development of a quantitative immunocapture real-time PCR assay for detecting structurally intact adenoviral particles in water. J Virol Methods 194(1–2):235–241. doi:10.1016/j.jviromet.2013.07.009

    CAS  Google Scholar 

  • Olsvik O, Popovic T, Skjerve E, Cudjoe KS, Hornes E, Ugelstad J, Uhlen M (1994) Magnetic separation techniques in diagnostic microbiology. Clin Microbiol Rev 7(1):43–54

    CAS  Google Scholar 

  • Papafragkou E, Plante M, Mattison K, Bidawid S, Karthikeyan K, Farber JM, Jaykus LA (2008) Rapid and sensitive detection of hepatitis A virus in representative food matrices. J Virol Methods 147(1):177–187. doi:10.1016/j.jviromet.2007.08.024

    CAS  Google Scholar 

  • Parshionikar S, Laseke I, Fout GS (2010) Use of propidium monoazide in reverse transcriptase PCR to distinguish between infectious and noninfectious enteric viruses in water samples. Appl Environ Microbiol 76(13):4318–4326. doi:10.1128/AEM.02800-09

    CAS  Google Scholar 

  • Pavoni E, Consoli M, Suffredini E, Arcangeli G, Serracca L, Battistini R, Rossini I, Croci L, Losio MN (2013) Noroviruses in seafood: a 9-year monitoring in Italy. Foodborne Pathog Dis 10(6):533–539. doi:10.1089/fpd.2012.1399

    Google Scholar 

  • Perelle S, Cavellini L, Burger C, Blaise-Boisseau S, Hennechart-Collette C, Merle G, Fach P (2009) Use of a robotic RNA purification protocol based on the NucliSens easyMAG for real-time RT-PCR detection of hepatitis A virus in bottled water. J Virol Methods 157(1):80–83. doi:10.1016/j.jviromet.2008.11.022

    CAS  Google Scholar 

  • Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30(9):e36

    Google Scholar 

  • Postollec F, Falentin H, Pavan S, Combrisson J, Sohier D (2011) Recent advances in quantitative PCR (qPCR) applications in food microbiology. Food Microbiol 28(5):848–861. doi:10.1016/j.fm.2011.02.008

    CAS  Google Scholar 

  • Pugniere P, Banzet S, Chaillou T, Mouret C, Peinnequin A (2011) Pitfalls of reverse transcription quantitative polymerase chain reaction standardization: volume-related inhibitors of reverse transcription. Anal Biochem 415(2):151–157. doi:10.1016/j.ab.2011.04.008

    CAS  Google Scholar 

  • Radstrom P, Knutsson R, Wolffs P, Lovenklev M, Lofstrom C (2004) Pre-PCR processing: strategies to generate PCR-compatible samples. Mol Biotechnol 26(2):133–146. doi:10.1385/MB:26:2:133

    Google Scholar 

  • Radstrom P, Lofstrom C, Lovenklev M, Knutsson R, Wolffs P (2008) Strategies for overcoming PCR inhibition. CSH Protoc 2008:pdb top20

  • Reichert-Schwillinsky F, Pin C, Dzieciol M, Wagner M, Hein I (2009) Stress- and growth rate-related differences between plate count and real-time PCR data during growth of Listeria monocytogenes. Appl Environ Microbiol 75(7):2132–2138. doi:10.1128/AEM.01796-08

    CAS  Google Scholar 

  • Reynolds KA (2004) Integrated cell culture/PCR for detection of enteric viruses in environmental samples. Methods Mol Biol 268:69–78. doi:10.1385/1-59259-766-1:069

    CAS  Google Scholar 

  • Richards GP (1999) Limitations of molecular biological techniques for assessing the virological safety of foods. J Food Prot 62(6):691–697

    CAS  Google Scholar 

  • Rizzo C, Alfonsi V, Bruni R, Busani L, Ciccaglione A, De Medici D, Di Pasquale S, Equestre M, Escher M, Montano-Remacha M, Scavia G, Taffon S, Carraro V, Franchini S, Natter B, Augschiller M, Tosti M (2014) Central Task Force on Hepatitis A. Ongoing outbreak of hepatitis A in Italy: preliminary report as of 31 May 2013. Euro Surveill 18(27). Available online: http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=20518

  • Rodriguez-Lazaro D, Hernandez M (2013) Real-time PCR in food science: introduction. Curr Issues Mol Biol 15(2):25–38

    CAS  Google Scholar 

  • Rodríguez-Lázaro D, Lombard B, Smith H, Rzezutka A, D’Agostino M, Helmuth R, Schroeter A, Malorny B, Miko A, Guerra B, Davison J, Kobilinsky A, Hernández M, Bertheau Y, Cook N (2007) Trends in analytical methodology in food safety and quality: monitoring microorganisms and genetically modified organisms. Trends Food Sci Technol 18:306–319

    Google Scholar 

  • Rodriguez-Lazaro D, Cook N, Hernandez M (2013) Real-time PCR in food science: PCR diagnostics. Curr Issues Mol Biol 15(2):39–44

    CAS  Google Scholar 

  • Rodriguez-Lazaro D, Gonzalez-García P, Delibato E, De Medici D, García-Gimeno RM, Valero A, Hernandez M (2014) Next day Salmonella spp. detection method based on real-time PCR for meat, dairy and vegetable food products. Int J Food Microbiol. doi:10.1016/j.ijfoodmicro.2014.03.021

  • Rosenquist H, Bengtsson A, Hansen TB (2007) A collaborative study on a Nordic standard protocol for detection and enumeration of thermotolerant Campylobacter in food (NMKL 119, 3. Ed., 2007). Int J Food Microbiol 118(2):201–213. doi:10.1016/j.ijfoodmicro.2007.07.037

    CAS  Google Scholar 

  • Rossmanith P, Wagner M (2010) Sample preparation for the detection of foodborne pathogens by molecular biological methods. In: Brul S, Fratamico PM, McMeekin TA (eds) Tracing pathogens in the food chain. Woodhead, Cambridge

    Google Scholar 

  • Rossmanith P, Wagner M (2011) The challenge to quantify Listeria monocytogenes—a model leading to new aspects in molecular biological food pathogen detection. J Appl Microbiol 110(3):605–617. doi:10.1111/j.1365-2672.2010.04915.x

    CAS  Google Scholar 

  • Rossmanith P, Suss B, Wagner M, Hein I (2007) Development of matrix lysis for concentration of gram positive bacteria from food and blood. J Microbiol Methods 69(3):504–511. doi:10.1016/j.mimet.2007.03.003

    CAS  Google Scholar 

  • Rossmanith P, Mester P, Fruhwirth K, Fuchs S, Wagner M (2011) Proof of concept for recombinant cellular controls in quantitative molecular pathogen detection. Appl Environ Microbiol 77(7):2531–2533. doi:10.1128/AEM.02601-10

    CAS  Google Scholar 

  • Rudi K, Moen B, Dromtorp SM, Holck AL (2005) Use of ethidium monoazide and PCR in combination for quantification of viable and dead cells in complex samples. Appl Environ Microbiol 71(2):1018–1024. doi:10.1128/AEM.71.2.1018-1024.2005

    CAS  Google Scholar 

  • Sadovski AY, Fattal B, Goldberg D, Katzenelson E, Shuval HI (1978) High levels of microbial contamination of vegetables irrigated with wastewater by the drip method. Appl Environ Microbiol 36(6):824–830

    CAS  Google Scholar 

  • Sanchez G, Bosch A, Pinto RM (2007) Hepatitis A virus detection in food: current and future prospects. Lett Appl Microbiol 45(1):1–5. doi:10.1111/j.1472-765X.2007.02140.x

    CAS  Google Scholar 

  • Sanchez G, Elizaquivel P, Aznar R (2013) Discrimination of infectious hepatitis A viruses by propidium monoazide real-time RT-PCR. Food Environ Virol 4(1):21–25. doi:10.1007/s12560-011-9074-5

    Google Scholar 

  • Scherer K, Mäde D, Ellerbroek L, Schulenburg J, Johne R, Klein G (2008) Application of a swab sampling method for the detection of norovirus and rotavirus to artificially contaminated food and environmental surfaces. Food Environ Virol 1:42–49

    Google Scholar 

  • Schoder D, Schmalwieser A, Schauberger G, Kuhn M, Hoorfar J, Wagner M (2003) Physical characteristics of six new thermocyclers. Clin Chem 49(6 Pt 1):960–963

    CAS  Google Scholar 

  • Schultz AC, Perelle S, Di Pasquale S, Kovac K, De Medici D, Fach P, Sommer HM, Hoorfar J (2010) Collaborative validation of a rapid method for efficient virus concentration in bottled water. Int J Food Microbiol 145(Suppl 1):S158–S166. doi:10.1016/j.ijfoodmicro.2010.07.030

    Google Scholar 

  • Schultz AC, Perelle S, Di Pasquale S, Kovac K, De Medici D, Fach P, Sommer HM, Hoorfar J (2011) Collaborative validation of a rapid method for efficient virus concentration in bottled water. Int J Food Microbiol 145(Suppl 1):S158–S166. doi:10.1016/j.ijfoodmicro.2010.07.030

    Google Scholar 

  • Shan XC, Wolffs P, Griffiths MW (2005) Rapid and quantitative detection of hepatitis A virus from green onion and strawberry rinses by use of real-time reverse transcription-PCR. Appl Environ Microbiol 71(9):5624–5626. doi:10.1128/AEM.71.9.5624-5626.2005

    CAS  Google Scholar 

  • Shields MJ, Hahn KR, Janzen TW, Goji N, Thomas MC, Kingombe CB, Paquet C, Kell AJ, Amoako KK (2012) Immunomagnetic capture of Bacillus anthracis spores from food. J Food Prot 75(7):1243–1248. doi:10.4315/0362-028X.JFP-12-048

    Google Scholar 

  • Soejima T, Schlitt-Dittrich F, Yoshida S (2011) Polymerase chain reaction amplification length-dependent ethidium monoazide suppression power for heat-killed cells of Enterobacteriaceae. Anal Biochem 418(1):37–43. doi:10.1016/j.ab.2011.06.027

    CAS  Google Scholar 

  • Stals A, Mathijs E, Baert L, Botteldoorn N, Denayer S, Mauroy A, Scipioni A, Daube G, Dierick K, Herman L, Van Coillie E, Thiry E, Uyttendaele M (2013) Molecular detection and genotyping of noroviruses. Food Environ Virol 4(4):153–167. doi:10.1007/s12560-012-9092-y

    Google Scholar 

  • Stevens KA, Jaykus LA (2004) Direct detection of bacterial pathogens in representative dairy products using a combined bacterial concentration-PCR approach. J Appl Microbiol 97(6):1115–1122. doi:10.1111/j.1365-2672.2004.02393.x

    CAS  Google Scholar 

  • Suffredini E, Lanni L, Arcangeli G, Pepe T, Mazzette R, Ciccaglioni G, Croci L (2014) Qualitative and quantitative assessment of viral contamination in bivalve molluscs harvested in Italy. Int J Food Microbiol. doi:10.1016/j.ijfoodmicro.2014.02.026

    Google Scholar 

  • Tan M, Jiang X (2005) Norovirus and its histo-blood group antigen receptors: an answer to a historical puzzle. Trends Microbiol 13(6):285–293. doi:10.1016/j.tim.2005.04.004

    CAS  Google Scholar 

  • Thisted Lambertz S, Ballagi-Pordany A, Lindqvist R (1998) A mimic as internal standard to monitor PCR analysis of food-borne pathogens. Lett Appl Microbiol 26(1):9–11

    CAS  Google Scholar 

  • Tian P, Mandrell R (2006) Detection of norovirus capsid proteins in faecal and food samples by a real time immuno-PCR method. J Appl Microbiol 100(3):564–574. doi:10.1111/j.1365-2672.2005.02816.x

    CAS  Google Scholar 

  • Tian P, Bates AH, Jensen HM, Mandrell RE (2006) Norovirus binds to blood group A-like antigens in oyster gastrointestinal cells. Lett Appl Microbiol 43(6):645–651. doi:10.1111/j.1472-765X.2006.02010.x

    CAS  Google Scholar 

  • Tu S, Reed S, Gehring A, He Y (2011) Simultaneous detection of Escherichia coli O157:H7 and Salmonella Typhimurium: the use of magnetic beads conjugated with multiple capture antibodies. Food Anal Methods 4:357–364

    Google Scholar 

  • Urbanucci A, Myrmel M, Berg I, von Bonsdorff CH, Maunula L (2009) Potential internalisation of caliciviruses in lettuce. Int J Food Microbiol 135(2):175–178. doi:10.1016/j.ijfoodmicro.2009.07.036

    CAS  Google Scholar 

  • Wilde J, Eiden J, Yolken R (1990) Removal of inhibitory substances from human fecal specimens for detection of group A rotaviruses by reverse transcriptase and polymerase chain reactions. J Clin Microbiol 28(6):1300–1307

    CAS  Google Scholar 

  • Wolffs P, Knutsson R, Sjoback R, Radstrom P (2001) PNA-based light-up probes for real-time detection of sequence-specific PCR products. Biotechniques 31(4):766, 769–771

    CAS  Google Scholar 

  • Wolffs P, Knutsson R, Norling B, Radstrom P (2004) Rapid quantification of Yersinia enterocolitica in pork samples by a novel sample preparation method, flotation, prior to real-time PCR. J Clin Microbiol 42(3):1042–1047

    CAS  Google Scholar 

  • Wolffs P, Norling B, Hoorfar J, Griffiths M, Radstrom P (2005) Quantification of Campylobacter spp. in chicken rinse samples by using flotation prior to real-time PCR. Appl Environ Microbiol 71(10):5759–5764. doi:10.1128/AEM.71.10.5759-5764.2005

    CAS  Google Scholar 

  • Woudstra C, Skarin H, Anniballi F, Auricchio B, De Medici D, Bano L, Drigo I, Hansen T, Lofstrom C, Hamidjaja R, van Rotterdam BJ, Koene M, Bayon-Auboyer MH, Buffereau JP, Fach P (2013) Validation of a real-time PCR based method for detection of Clostridium botulinum types C, D and their mosaic variants C-D and D-C in a multicenter collaborative trial. Anaerobe 22:31–37. doi:10.1016/j.anaerobe.2013.05.002

    CAS  Google Scholar 

  • Zhang G, Brown EW, Gonzalez-Escalona N (2011) Comparison of real-time PCR, reverse transcriptase real-time PCR, loop-mediated isothermal amplification, and the FDA conventional microbiological method for the detection of Salmonella spp. in produce. Appl Environ Microbiol 77(18):6495–6501. doi:10.1128/AEM.00520-11

    CAS  Google Scholar 

  • Zhao T, Zhao P, Doyle MP (2012) Detection and isolation of Yersinia pestis without fraction 1 antigen by monoclonal antibody in foods and water. J Food Prot 75(9):1555–1561. doi:10.4315/0362-028X.JFP-11-514

    CAS  Google Scholar 

  • Zuo H, Xie Z, Ding X, Zhang W, Yang J, Fan X, Poms R, Pei X (2011) A novel magnetic xapture-multiplex PCR assay for the simultaneous detection of three foodborne pathogens. Qual Assur Saf Crops Foos 3:212–220

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the framework of the EU project funded by the 7th Framework Programme of the European Union “Safe Food for Europe—Coordination of research activities and Dissemination of research results of EC funded research on food safetyˮ (project acronym: FOODSEG) Grant agreement no. 266061. This publication reflects the views only of the authors, and the European Commission cannot be held responsible for any use which may be made of the information contained therein.

Conflict of Interest

No financial relationship with other institutions or private industry has influenced the results of this study. D. De Medici has no conflict of interest, T. Kuchta has no conflict of interest, R. Knutsson has no conflict of interest, A. Angelov has no conflict of interest, B. Auricchio has no conflict of interest, M. Barbanera has no conflict of interest, C. Diaz-Amigo has no conflict of interest, A. Fiore has no conflict of interest, E. Kudirkiene has no conflict of interest, A. Hohl has no conflict of interest, D. Horvatek Tomic has no conflict of interest, V. Gotcheva has no conflict of interest, B. Popping has no conflict of interest, E. Prukner-Radovcic has no conflict of interest, S. Scaramaglia has no conflict of interest, P. Siekel has no conflict of interest, K.A. To has no conflict of interest and M. Wagner has no conflict of interest. This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. De Medici.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Medici, D., Kuchta, T., Knutsson, R. et al. Rapid Methods for Quality Assurance of Foods: the Next Decade with Polymerase Chain Reaction (PCR)-Based Food Monitoring. Food Anal. Methods 8, 255–271 (2015). https://doi.org/10.1007/s12161-014-9915-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-014-9915-6

Keywords

Navigation