Skip to main content

Advertisement

Log in

Low density of sigma1 receptors in early Alzheimer’s disease

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objective

The sigma1 receptor is considered to be involved in cognitive function. A postmortem study reported that the sigma1 receptors were reduced in the hippocampus in Alzheimer’s disease (AD). However, in vivo imaging of sigma1 receptors in the brain of AD patients has not been reported. The aim of this study is to investigate the mapping of sigma1 receptors in AD using [11C]SA4503 positron emission tomography (PET).

Methods

We studied five AD patients and seven elderly volunteers. A dynamic series of decay-corrected PET data acquisition was performed for 90 min starting at the time of the injection of 500 MBq of [11C]SA4503. A two-tissue three-compartment model was used to estimate K 1, k 2, k 3, k 4, and the delay between metabolite-corrected plasma and tissue time activity using a Gauss-Newton algorithm. The ratio of k 3 to k 4 was computed as the binding potential (BP), which is linearly related to the density of sigma1 receptors. Unpaired t tests were used to compare K 1 and BP in patients with AD and normal subjects.

Results

As compared with normals, BP in the AD was significantly lower in the frontal, temporal, and occipital lobe, cerebellum and thalamus, whereas K 1 was significantly lower in the parietal lobe.

Conclusions

[11C]SA4503 PET can demonstrate that the density of cerebral and cerebellar sigma1 receptors is reduced in early AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hashimoto K, Ishiwata K. Sigma receptor ligands: possible application as therapeutic drugs and as radiopharmaceuticals. Curr Pharm Des 2006;12:3857–3876.

    Article  PubMed  CAS  Google Scholar 

  2. Walker JM, Bowen WD, Walker FO, Matsumoto RR, De Costa B, Rice KC. Sigma receptors: biology and function. Pharmacol Rev 1990;42:355–402.

    PubMed  CAS  Google Scholar 

  3. Quirion R, Bowen WD, Itzhak Y, Junien JL, Musacchio JM, Rothman RB, et al. A proposal for the classification of sigma binding sites. Trends Pharmacol Sci 1992;13:85–86.

    Article  PubMed  CAS  Google Scholar 

  4. Su TP, London ED, Jaffe JH. Steroid binding at sigma receptors suggests a link between endocrine, nervous, and immune systems. Science (New York) 1988;240:219–221.

    CAS  Google Scholar 

  5. Su TP. Delineating biochemical and functional properties of sigma receptors: emerging concepts. Critical Rev Neurobiol 1993;7:187–203.

    CAS  Google Scholar 

  6. Bowen WD. Sigma receptors: recent advances and new clinical potentials. Pharm Acta Helv 2000;7:211–218.

    Article  Google Scholar 

  7. Maurice T, Urani A, Phan VL, Romieu P. The interaction between neuroactive steroids and the sigma1 receptor function: behavioral consequences and therapeutic opportunities. Brain Res Rev 2001;37:116–132.

    Article  PubMed  CAS  Google Scholar 

  8. Hiramatsu M, Hoshino T, Kameyama T, Nabeshima T. Involvement of kappa-opioid and sigma receptors in short-term memory in mice. Eur J Pharmacol 2002;453:91–98.

    Article  PubMed  CAS  Google Scholar 

  9. Maurice T, Hiramatsu M, Kameyama T, Hasegawa T, Nabeshima T. Behavioral evidence for a modulating role of sigma ligands in memory processes: II. Reversion of carbon monoxide-induced amnesia. Brain Res 1994;647:57–64.

    Article  PubMed  CAS  Google Scholar 

  10. Senda T, Matsuno K, Okamoto K, Kobayashi T, Nakata K, Mita S. Ameliorating effect of SA4503, a novel sigma1 receptor agonist, on memory impairments induced by cholinergic dysfunction in rats. Eur J Pharmacol 1996;315:1–10.

    Article  PubMed  CAS  Google Scholar 

  11. Matsuno K, Matsunaga K, Senda T, Mita S. Increase in extra-cellular acetylcholine level by sigma ligands in rat frontal cortex. J Pharmacol Exp Ther 1993;265:851–859.

    PubMed  CAS  Google Scholar 

  12. Matsuno K, Senda T, Kobayashi T, Mita S. Involvement of sigma1 receptor in (+)-N-allylnormetazocine-stimulated hippocampal cholinergic functions in rats. Brain Res 1995;690:200–206.

    Article  PubMed  CAS  Google Scholar 

  13. Kobayashi T, Matsuno K, Nakata K, Mita S. Enhancement of acetylcholine release by SA4503, a novel sigma1 receptor agonist, in the rat brain. J Pharmacol Exp Ther 1996;279:106–113.

    PubMed  CAS  Google Scholar 

  14. Ishiwata K, Kobayashi T, Kawamura K, Matsuno K. Age-related changes of the binding of [3H]SA4503 to sigma1 receptors in the rat brain. Ann Nucl Med 2003;17:73–77.

    PubMed  CAS  Google Scholar 

  15. Kawamura K, Kimura Y, Tsukada H, Kobayashi T, Nishiyama S, Kakiuchi T, et al. An increase of sigma receptors in the aged monkey brain. Neurobiol Aging 2003;24:745–752.

    Article  PubMed  CAS  Google Scholar 

  16. Weissman AD, Casanova MF, Kleinman JE, London ED, De Souza EB. Selective loss of cerebral cortical sigma, but not PCP binding sites in schizophrenia. Biol Psychiatry 1991;29:41–54.

    Article  PubMed  CAS  Google Scholar 

  17. Matsuno K, Kobayashi T, Tanaka MK, Mita S. Sigma1 receptor subtype is involved in the relief of behavioral despair in the mouse forced swimming test. Eur J Pharmacol 1996;312:267–271.

    Article  PubMed  CAS  Google Scholar 

  18. Lobner D, Lipton P. Sigma-ligands and non-competitive NMDA antagonists inhibit glutamate release during cerebral ischemia. Neurosci Lett 1990;117:169–174.

    Article  PubMed  CAS  Google Scholar 

  19. Mishina M, Ishiwata K, Ishii K, Kitamura S, Kimura Y, Kawamura K, et al. Function of sigma receptors in Parkinson’s disease. Acta Neurol Scand 2005;112:103–107.

    Article  PubMed  CAS  Google Scholar 

  20. Jansen KL, Faull RL, Storey P, Leslie RA. Loss of sigma binding sites in the CA1 area of the anterior hippocampus in Alzheimer’s disease correlates with CA1 pyramidal cell loss. Brain Res 1993;623:299–302.

    Article  PubMed  CAS  Google Scholar 

  21. Maurice T. Improving Alzheimer’s disease-related cognitive deficits with sigma1 receptor agonists. Drug News Perspect 2002;15:617–625.

    Article  PubMed  CAS  Google Scholar 

  22. Ishiwata K, Tsukada H, Kawamura K, Kimura Y, Nishiyama S, Kobayashi T, et al. Mapping of CNS sigma1 receptors in the conscious monkey: preliminary PET study with [11C]SA4503. Synapse 2001;40:235–237.

    Article  PubMed  CAS  Google Scholar 

  23. Kawamura K, Ishiwata K, Tajima H, Ishii S, Matsuno K, Homma Y, et al. In vivo evaluation of [11C]SA4503 as a PET ligand for mapping CNS sigma1 receptors. Nucl Med Biol 2000;27:255–261.

    Article  PubMed  CAS  Google Scholar 

  24. Sakata M, Kimura Y, Naganawa M, Oda K, Ishii K, Chihara K, et al. Mapping of human cerebral sigma1 receptors using positron emission tomography and [11C]SA4503. Neuroimage 2007;35:1–8.

    Article  PubMed  Google Scholar 

  25. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984;34:939–944.

    PubMed  CAS  Google Scholar 

  26. Herholz K, Salmon E, Perani D, Baron JC, Holthoff V, Frolich L, et al. Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET. Neuroimage 2002;17:302–316.

    Article  PubMed  CAS  Google Scholar 

  27. Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann Neurol 1997;42:85–94.

    Article  PubMed  CAS  Google Scholar 

  28. Reisberg B, Borenstein J, Salob SP, Ferris SH, Franssen E, Georgotas A. Behavioral symptoms in Alzheimer’s disease: phenomenology and treatment. J Clin Psychiatry 1987;48Suppl:9–15.

    PubMed  Google Scholar 

  29. Folstein MF, Folstein SE, McHugh PR. “Mini-Mental State”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975;12:189–198.

    Article  PubMed  CAS  Google Scholar 

  30. Hughes CP, Berg L, Danziger WL, Coben LA, Martin RL. A new clinical scale for the staging of dementia. Br J Psychiatry 1982;140:566–572.

    PubMed  CAS  Google Scholar 

  31. Fujiwara T, Watanuki S, Yamamoto S, Miyake M, Seo S, Itoh M, et al. Performance evaluation of a large axial field-of-view PET scanner: SET-2400 W. Ann Nucl Med 1997;11:307–313.

    PubMed  CAS  Google Scholar 

  32. Mishina M, Senda M, Kimura Y, Toyama H, Ishiwata K, Ohyama M, et al. Intrasubject correlation between static scan and distribution volume images for [11C]flumazenil PET. Ann Nucl Med 2000;14:193–198.

    Article  PubMed  CAS  Google Scholar 

  33. Logan J. A review of graphical methods for tracer studies and strategies to reduce bias. Nucl Med Biol 2003;30:833–844.

    Article  PubMed  Google Scholar 

  34. Mielke R, Schroder R, Fink GR, Kessler J, Herholz K, Heiss WD. Regional cerebral glucose metabolism and postmortem pathology in Alzheimer’s disease. Acta Neuropathol (Berl) 1996;91:174–179.

    Article  CAS  Google Scholar 

  35. Ohyama M, Senda M, Ishiwata K, Kitamura S, Mishina M, Ishii K, et al. Preserved benzodiazepine receptors in Alzheimer’s disease measured with C-11 flumazenil PET and I-123 iomazenil SPECT in comparison with CBF. Ann Nucl Med 1999;13:309–315.

    Article  PubMed  CAS  Google Scholar 

  36. Nordberg A. PET imaging of amyloid in Alzheimer’s disease. Lancet Neurol 2004;3:519–527.

    Article  PubMed  CAS  Google Scholar 

  37. Braak H, Braak E, Bohl J, Lang W. Alzheimer’s disease: amyloid plaques in the cerebellum. J Neurol sci 1989;93:277–287.

    Article  PubMed  CAS  Google Scholar 

  38. Ishii K, Sasaki M, Kitagaki H, Yamaji S, Sakamoto S, Matsuda K, et al. Reduction of cerebellar glucose metabolism in advanced Alzheimer’s disease. J Nucl Med 1997;38:925–928.

    PubMed  CAS  Google Scholar 

  39. Larner AJ. The cerebellum in Alzheimer’s disease. Dement Geriatr Cogn Disord 1997;8:203–209.

    Article  PubMed  CAS  Google Scholar 

  40. Wegiel J, Wisniewski HM, Dziewiatkowski J, Badmajew E, Tarnawski M, Reisberg B, et al. Cerebellar atrophy in Alzheimer’s disease-clinicopathological correlations. Brain Res 1999;818:41–50.

    Article  PubMed  CAS  Google Scholar 

  41. Sjöbeck M, Englund E. Alzheimer’s disease and the cerebellum: a morphologic study on neuronal and glial changes. Dement Geriatr Cogn Disord 2001;12:211–218.

    Article  PubMed  Google Scholar 

  42. Verdile G, Gnjec A, Miklossy J, Fonte J, Veurink G, Bates K, et al. Protein markers for Alzheimer disease in the frontal cortex and cerebellum. Neurology 2004;63:1385–1392.

    PubMed  CAS  Google Scholar 

  43. Sultana R, Boyd-Kimball D, Poon HF, Cai J, Pierce WM, Klein JB, et al. Redox proteomics identification of oxidized proteins in Alzheimer’s disease hippocampus and cerebellum: an approach to understand pathological and biochemical alterations in AD. Neurobiol Aging 2006;27:1564–1576.

    Article  PubMed  CAS  Google Scholar 

  44. Chaki S, Okuyama S, Ogawa S, Tomisawa K. Regulation of NMDA-induced [3H]dopamine release from rat hippocampal slices through sigma-1 binding sites. Neurochem Int 1998;33:29–34.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Mishina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishina, M., Ohyama, M., Ishii, K. et al. Low density of sigma1 receptors in early Alzheimer’s disease. Ann Nucl Med 22, 151–156 (2008). https://doi.org/10.1007/s12149-007-0094-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-007-0094-z

Keywords

Navigation