Skip to main content
Log in

Intrasubject correlation between static sean and distribution volume images for [11C]flumazenil PET

  • Original Artisies
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Accumulation of [11C]flumazenil (FMZ) reflects central nervous system benzodiazepine receptor (BZR). We searched for the optimal time for a static PET scan with FMZ as semi-quantitative imaging of BZR distribution. In 10 normal subjects, a dynamic series of decay-corrected PET scans was performed for 60 minutes, and the arterial blood was sampled during the scan to measure radioactivity and labeled metabolites. We generated 13 kinds of “static scan” images from the dynamic scan in each subject, and analyzed the pixel correlation for these images versus distribution volume (DV) images. We also analyzed the time for the [11C]FMZ in plasma and tissue to reach the equilibrium. The intra-subject pixel correlation demonstrated that the “static scan” images for the period centering around 30 minutes post-injection had the strongest linear correlation with the DV image. The ratio of radioactivity in the cortex to that in the plasma reached a peak at 40 minutes after injection. Considering the physical decay and patient burden, we conclude that the decay corrected static scan for [11C]FMZ PET as semi-quantitative imaging of BZR distribution is to be optimally acquired from 20 to 40 minutes after injection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Savic I, Persson A, Roland P, Pauli S, Sedvall G, Widen L.In-vivo demonstration of reduced benzodiazepine receptor binding in human epileptic foci.Lancet 2: 863–866, 1988.

    Article  CAS  PubMed  Google Scholar 

  2. Holthoff VA, Koeppe RA, Frey KA, Penney JB, Markel DS, Kuhl DE, et al. Positron emission tomography measures of benzodiazepine receptors in Huntington’s disease.Ann Neurol 34: 76–81, 1993.

    Article  CAS  PubMed  Google Scholar 

  3. Gilman S, Koeppe RA, Junck L, Kluin KJ, Lohman M, St Laurent RT. Benzodiazepine receptor binding in cerebellar degenerations studied with positron emission tomography.Ann Neurol 38: 176–185, 1995.

    Article  CAS  PubMed  Google Scholar 

  4. Meyer M, Koeppe RA, Frey KA, Foster NL, Kuhl DE. Positron emission tomography measures of benzodiazepine binding in Alzheimer’s disease.Arch Neurol 52: 314–317, 1995.

    CAS  PubMed  Google Scholar 

  5. Gilman S, Koeppe RA, Adams K, Johnson-Greene D, Junck L, Kluin KJ, et al. Positron emission tomographic studies of cerebral benzodiazepine-receptor binding in chronic alcoholics.Ann Neurol 40: 163–171, 1996.

    Article  CAS  PubMed  Google Scholar 

  6. Kitamura S, Koshi Y, Komiyama T, Sakayori O, Komaba Y, Ohyama M, et al. Benzodiazepine receptor and cerebral blood flow in early Alzheimer’s disease—SPECT study using123I-iomazenil and123I-IMP.KAKU IGAKU (Jpn J Nucl Med) 33: 49–56, 1996.

    CAS  Google Scholar 

  7. Ohyama M, Senda M, Ishiwata K, Kitamura S, Mishina M, Ishii K, et al. Preserved benzodiazepine receptors in Alzheimer’s disease measured with C-11 flumazenil PET and I-123 iomazenil SPECT in comparison with CBF.Ann Nucl Med 13: 309–315, 1999.

    Article  CAS  PubMed  Google Scholar 

  8. Frey KA, Holthoff VA, Koeppe RA, Jewett DM, Kilbourn MR, Kuhl DE. Parametricin vivo imaging of benzodiazepine receptor distribution in human brain.Ann Neurol 30: 663–672, 1991.

    Article  CAS  PubMed  Google Scholar 

  9. Koeppe RA, Holthoff VA, Frey KA, Kilbourn MR, Kuhl DE. Compartmental analysis of [11C]flumazenil kinetics for the estimation of ligand transport rate and receptor distribution using positron emission tomography.J Cereb Blood Flow Metab 11: 735–744, 1991.

    CAS  PubMed  Google Scholar 

  10. Price JC, Mayberg HS, Dannals RF, Wilson AA, Ravert HT, Sadzot B, et al. Measurement of benzodiazepine receptor number and affinity in humans using tracer kinetic modeling, positron emission tomography, and [11C]flumazenil.J Cereb Blood Flow Metab 13: 656–667, 1993.

    CAS  PubMed  Google Scholar 

  11. Millet P, Delforge J, Mauguiere F, Pappata S, Cinotti L, Frouin V, et al. Parameter and index images of benzodiazepine receptor concentration in the brain.J Nucl Med 36: 1462–1471, 1995.

    CAS  PubMed  Google Scholar 

  12. Iida H, Miura S, Kanno I, Murakami M, Takahashi K, Uemura K. Design and evaluation of HEADTOME-IV, a whole-body positron emission tomograph.IEEE Trans Nucl Sci NS-36: 1006–1010, 1989.

    Article  CAS  Google Scholar 

  13. Ishiwata K, Ito T, Ohyama M, Yamada T, Mishina M, Ishii K, et al. Metabolite analysis of [11C]flumazenil in human plasma: Assessment as the standardized value for quantitative PET study.Ann Nucl Med 12: 55–59, 1998.

    CAS  PubMed  Google Scholar 

  14. Toyama H, Yamada T, Uemura K, Kimura Y, Ishii K, Ohyama M, et al. Quantitative mapping of benzodiazepine receptor concentration in a static PET study.Neurolmage 5: A34, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Mishina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishina, M., Senda, M., Kimura, Y. et al. Intrasubject correlation between static sean and distribution volume images for [11C]flumazenil PET. Ann Nucl Med 14, 193–198 (2000). https://doi.org/10.1007/BF02987859

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02987859

Key words

Navigation