Skip to main content

Advertisement

Log in

N-Cadherin is Involved in Neuronal Activity-Dependent Regulation of Myelinating Capacity of Zebrafish Individual Oligodendrocytes In Vivo

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Stimulating neuronal activity increases myelin sheath formation by individual oligodendrocytes, but how myelination is regulated by neuronal activity in vivo is still not fully understood. While in vitro studies have revealed the important role of N-cadherin in myelination, our understanding in vivo remains quite limited. To obtain the role of N-cadherin during activity-dependent regulation of myelinating capacity of individual oligodendrocytes, we successfully built an in vivo dynamic imaging model of the Mauthner cell at the subcellular structure level in the zebrafish central nervous system. Enhanced green fluorescent protein (EGFP)-tagged N-cadherin was used to visualize the stable accumulations and mobile transports of N-cadherin by single-cell electroporation at the single-cell level. We found that pentylenetetrazol (PTZ) significantly enhanced the accumulation of N-cadherin in Mauthner axons, a response that was paralleled by enhanced sheath number per oligodendrocytes. By offsetting this phenotype using oligopeptide (AHAVD) which blocks the function of N-cadherin, we showed that PTZ regulates myelination in an N-cadherin-dependent manner. What is more, we further suggested that PTZ influences N-cadherin and myelination via a cAMP pathway. Consequently, our data indicated that N-cadherin is involved in neuronal activity-dependent regulation of myelinating capacity of zebrafish individual oligodendrocytes in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wake H, Lee PR, Fields RD (2011) Control of local protein synthesis and initial events in myelination by action potentials. Science 333(6049):1647–1651. doi:10.1126/science.1206998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Stevens B, Tanner S, Fields RD (1998) Control of myelination by specific patterns of neural impulses. J Neurosci Off J Soc Neurosci 18(22):9303–9311

    CAS  Google Scholar 

  3. Ishibashi T, Dakin KA, Stevens B, Lee PR, Kozlov SV, Stewart CL, Fields RD (2006) Astrocytes promote myelination in response to electrical impulses. Neuron 49(6):823–832. doi:10.1016/j.neuron.2006.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gibson EM, Purger D, Mount CW, Goldstein AK, Lin GL, Wood LS, Inema I, Miller SE et al (2014) Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science 344(6183):1252304. doi:10.1126/science.1252304

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mensch S, Baraban M, Almeida R, Czopka T, Ausborn J, El Manira A, Lyons DA (2015) Synaptic vesicle release regulates myelin sheath number of individual oligodendrocytes in vivo. Nat Neurosci 18(5):628–630. doi:10.1038/nn.3991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hines JH, Ravanelli AM, Schwindt R, Scott EK, Appel B (2015) Neuronal activity biases axon selection for myelination in vivo. Nat Neurosci 18(5):683–689. doi:10.1038/nn.3992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wan L, Xia R, Ding W (2010) Short-term low-frequency electrical stimulation enhanced remyelination of injured peripheral nerves by inducing the promyelination effect of brain-derived neurotrophic factor on Schwann cell polarization. J Neurosci Res 88(12):2578–2587. doi:10.1002/jnr.22426

    CAS  PubMed  Google Scholar 

  8. Buxton RS, Magee AI (1992) Structure and interactions of desmosomal and other cadherins. Semin Cell Biol 3(3):157–167

    Article  CAS  PubMed  Google Scholar 

  9. Takeichi M (1990) Cadherins: a molecular family important in selective cell-cell adhesion. Annu Rev Biochem 59:237–252. doi:10.1146/annurev.bi.59.070190.001321

    Article  CAS  PubMed  Google Scholar 

  10. Shapiro L, Fannon AM, Kwong PD, Thompson A, Lehmann MS, Grubel G, Legrand JF, Als-Nielsen J et al (1995) Structural basis of cell-cell adhesion by cadherins. Nature 374(6520):327–337. doi:10.1038/374327a0

    Article  CAS  PubMed  Google Scholar 

  11. Tang L, Hung CP, Schuman EM (1998) A role for the cadherin family of cell adhesion molecules in hippocampal long-term potentiation. Neuron 20(6):1165–1175

    Article  CAS  PubMed  Google Scholar 

  12. Kemler R (1992) Classical cadherins. Semin Cell Biol 3(3):149–155

    Article  CAS  PubMed  Google Scholar 

  13. Tan ZJ, Peng Y, Song HL, Zheng JJ, Yu X (2010) N-cadherin-dependent neuron-neuron interaction is required for the maintenance of activity-induced dendrite growth. Proc Natl Acad Sci U S A 107(21):9873–9878. doi:10.1073/pnas.1003480107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mendez P, De Roo M, Poglia L, Klauser P, Muller D (2010) N-cadherin mediates plasticity-induced long-term spine stabilization. J Cell Biol 189(3):589–600. doi:10.1083/jcb.201003007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Basu R, Taylor MR, Williams ME (2015) The classic cadherins in synaptic specificity. Cell Adhes Migr 9(3):193–201. doi:10.1080/19336918.2014.1000072

    Article  CAS  Google Scholar 

  16. Jontes JD, Emond MR, Smith SJ (2004) In vivo trafficking and targeting of N-cadherin to nascent presynaptic terminals. J Neurosci Off J Soc Neurosci 24(41):9027–9034. doi:10.1523/JNEUROSCI.5399-04.2004

    Article  CAS  Google Scholar 

  17. Yamada S, Pokutta S, Drees F, Weis WI, Nelson WJ (2005) Deconstructing the cadherin-catenin-actin complex. Cell 123(5):889–901. doi:10.1016/j.cell.2005.09.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ozawa M, Baribault H, Kemler R (1989) The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species. EMBO J 8(6):1711–1717

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Bozdagi O, Shan W, Tanaka H, Benson DL, Huntley GW (2000) Increasing numbers of synaptic puncta during late-phase LTP: N-cadherin is synthesized, recruited to synaptic sites, and required for potentiation. Neuron 28(1):245–259

    Article  CAS  PubMed  Google Scholar 

  20. Benson DL, Tanaka H (1998) N-cadherin redistribution during synaptogenesis in hippocampal neurons. J Neurosci Off J Soc Neurosci 18(17):6892–6904

    CAS  Google Scholar 

  21. Schrick C, Fischer A, Srivastava DP, Tronson NC, Penzes P, Radulovic J (2007) N-cadherin regulates cytoskeletally associated IQGAP1/ERK signaling and memory formation. Neuron 55(5):786–798. doi:10.1016/j.neuron.2007.07.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Arikkath J, Reichardt LF (2008) Cadherins and catenins at synapses: roles in synaptogenesis and synaptic plasticity. Trends Neurosci 31(9):487–494. doi:10.1016/j.tins.2008.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fannon AM, Colman DR (1996) A model for central synaptic junctional complex formation based on the differential adhesive specificities of the cadherins. Neuron 17(3):423–434

    Article  CAS  PubMed  Google Scholar 

  24. Schnadelbach O, Ozen I, Blaschuk OW, Meyer RL, Fawcett JW (2001) N-cadherin is involved in axon-oligodendrocyte contact and myelination. Mol Cell Neurosci 17(6):1084–1093. doi:10.1006/mcne.2001.0961

    Article  CAS  PubMed  Google Scholar 

  25. Lewallen KA, Shen YA, De la Torre AR, Ng BK, Meijer D, Chan JR (2011) Assessing the role of the cadherin/catenin complex at the Schwann cell-axon interface and in the initiation of myelination. The Journal of neuroscience : the official journal of the Society for Neuroscience 31(8):3032–3043. doi:10.1523/JNEUROSCI.4345-10.2011

    Article  CAS  Google Scholar 

  26. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Developmental dynamics: an official publication of the American Association of Anatomists 203(3):253–310. doi:10.1002/aja.1002030302

    Article  CAS  Google Scholar 

  27. Kim JH, Lee SR, Li LH, Park HJ, Park JH, Lee KY, Kim MK, Shin BA et al (2011) High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS One 6(4):e18556. doi:10.1371/journal.pone.0018556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huang YB, Hu CR, Zhang L, Yin W, Hu B (2015) In vivo study of dynamics and stability of dendritic spines on olfactory bulb interneurons in Xenopus laevis tadpoles. PLoS One 10(10):e0140752. doi:10.1371/journal.pone.0140752

    Article  PubMed  PubMed Central  Google Scholar 

  29. Baraban SC, Taylor MR, Castro PA, Baier H (2005) Pentylenetetrazole induced changes in zebrafish behavior, neural activity and c-fos expression. Neuroscience 131(3):759–768. doi:10.1016/j.neuroscience.2004.11.031

    Article  CAS  PubMed  Google Scholar 

  30. Mysore SP, Tai CY, Schuman EM (2007) Effects of N-cadherin disruption on spine morphological dynamics. Front Cell Neurosci 1:1. doi:10.3389/neuro.03.001.2007

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wanner IB, Wood PM (2002) N-cadherin mediates axon-aligned process growth and cell-cell interaction in rat Schwann cells. J Neurosci Off J Soc Neurosci 22(10):4066–4079 doi: 20026406

    CAS  Google Scholar 

  32. Haas K, Jensen K, Sin WC, Foa L, Cline HT (2002) Targeted electroporation in Xenopus tadpoles in vivo—from single cells to the entire brain. Differentiation; research in biological diversity 70(4–5):148–154. doi:10.1046/j.1432-0436.2002.700404.x

    Article  CAS  PubMed  Google Scholar 

  33. Liu XF, Haas K (2011) Single-cell electroporation of Xenopus tadpole tectal neurons. Cold Spring Harbor protocols 2011(9):1128–1132. doi:10.1101/pdb.prot065615

    Google Scholar 

  34. Kimmel CB, Powell SL, Metcalfe WK (1982) Brain neurons which project to the spinal cord in young larvae of the zebrafish. J Comp Neurol 205(2):112–127. doi:10.1002/cne.902050203

    Article  CAS  PubMed  Google Scholar 

  35. Jontes JD, Buchanan J, Smith SJ (2000) Growth cone and dendrite dynamics in zebrafish embryos: early events in synaptogenesis imaged in vivo. Nat Neurosci 3(3):231–237. doi:10.1038/72936

    Article  CAS  PubMed  Google Scholar 

  36. Korn H, Faber DS (2005) The Mauthner cell half a century later: a neurobiological model for decision-making? Neuron 47(1):13–28. doi:10.1016/j.neuron.2005.05.019

    Article  CAS  PubMed  Google Scholar 

  37. Sillar KT (2009) Mauthner cells. Current biology : CB 19(9):R353–R355. doi:10.1016/j.cub.2009.02.025

    Article  CAS  PubMed  Google Scholar 

  38. Yu CR, Power J, Barnea G, O’Donnell S, Brown HE, Osborne J, Axel R, Gogos JA (2004) Spontaneous neural activity is required for the establishment and maintenance of the olfactory sensory map. Neuron 42(4):553–566

    Article  CAS  PubMed  Google Scholar 

  39. Hua JY, Smear MC, Baier H, Smith SJ (2005) Regulation of axon growth in vivo by activity-based competition. Nature 434(7036):1022–1026. doi:10.1038/nature03409

    Article  CAS  PubMed  Google Scholar 

  40. Hocking JC, Pollock NS, Johnston J, Wilson RJ, Shankar A, McFarlane S (2012) Neural activity and branching of embryonic retinal ganglion cell dendrites. Mech Dev 129(5–8):125–135. doi:10.1016/j.mod.2012.05.003

    Article  CAS  PubMed  Google Scholar 

  41. Hassinen M, Haverinen J, Hardy ME, Shiels HA, Vornanen M (2015) Inward rectifier potassium current (I K1) and Kir2 composition of the zebrafish (Danio rerio) heart. Pflugers Archiv: European journal of physiology 467(12):2437–2446. doi:10.1007/s00424-015-1710-8

    Article  CAS  PubMed  Google Scholar 

  42. Sherman DL, Brophy PJ (2005) Mechanisms of axon ensheathment and myelin growth. Nat Rev Neurosci 6(9):683–690. doi:10.1038/nrn1743

    Article  CAS  PubMed  Google Scholar 

  43. Ichinose S, Ogawa T, Hirokawa N (2015) Mechanism of activity-dependent cargo loading via the phosphorylation of KIF3A by PKA and CaMKIIa. Neuron 87(5):1022–1035. doi:10.1016/j.neuron.2015.08.008

    Article  CAS  PubMed  Google Scholar 

  44. Malone M, Gary D, Yang IH, Miglioretti A, Houdayer T, Thakor N, McDonald J (2013) Neuronal activity promotes myelination via a cAMP pathway. Glia 61(6):843–854. doi:10.1002/glia.22476

    Article  PubMed  Google Scholar 

  45. Bhatt DH, Otto SJ, Depoister B, Fetcho JR (2004) Cyclic AMP-induced repair of zebrafish spinal circuits. Science 305(5681):254–258. doi:10.1126/science.1098439

    Article  CAS  PubMed  Google Scholar 

  46. Simons M, Lyons DA (2013) Axonal selection and myelin sheath generation in the central nervous system. Curr Opin Cell Biol 25(4):512–519. doi:10.1016/j.ceb.2013.04.007

    Article  CAS  PubMed  Google Scholar 

  47. Wake H, Ortiz FC, Woo DH, Lee PR, Angulo MC, Fields RD (2015) Nonsynaptic junctions on myelinating glia promote preferential myelination of electrically active axons. Nat Commun 6:7844. doi:10.1038/ncomms8844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fields RD (2015) A new mechanism of nervous system plasticity: activity-dependent myelination. Nat Rev Neurosci 16(12):756–767. doi:10.1038/nrn4023

    Article  CAS  PubMed  Google Scholar 

  49. Preston MA, Macklin WB (2015) Zebrafish as a model to investigate CNS myelination. Glia 63(2):177–193. doi:10.1002/glia.22755

    Article  PubMed  Google Scholar 

  50. Czopka T (2016) Insights into mechanisms of central nervous system myelination using zebrafish. Glia 64(3):333–349. doi:10.1002/glia.22897

    Article  PubMed  Google Scholar 

  51. Hale ME, Ritter DA, Fetcho JR (2001) A confocal study of spinal interneurons in living larval zebrafish. J Comp Neurol 437(1):1–16

    Article  CAS  PubMed  Google Scholar 

  52. Gahtan E, O'Malley DM (2003) Visually guided injection of identified reticulospinal neurons in zebrafish: a survey of spinal arborization patterns. J Comp Neurol 459(2):186–200. doi:10.1002/cne.10621

    Article  PubMed  Google Scholar 

  53. Neki D, Nakayama H, Fujii T, Matsui-Furusho H, Oda Y (2014) Functional motifs composed of morphologically homologous neurons repeated in the hindbrain segments. J Neurosci Off J Soc Neurosci 34(9):3291–3302. doi:10.1523/JNEUROSCI.4610-13.2014

    Article  CAS  Google Scholar 

  54. Burden-Gulley SM, Gates TJ, Craig SE, Gupta M, Brady-Kalnay SM (2010) Stimulation of N-cadherin-dependent neurite outgrowth by small molecule peptide mimetic agonists of the N-cadherin HAV motif. Peptides 31(5):842–849. doi:10.1016/j.peptides.2010.02.002

    Article  CAS  PubMed  Google Scholar 

  55. Van Dorpe S, Bronselaer A, Nielandt J, Stalmans S, Wynendaele E, Audenaert K, Van De Wiele C, Burvenich C et al (2012) Brainpeps: the blood-brain barrier peptide database. Brain Struct Funct 217(3):687–718. doi:10.1007/s00429-011-0375-0

    Article  PubMed  Google Scholar 

  56. Van Dorpe S, Adriaens A, Polis I, Peremans K, Van Bocxlaer J, De Spiegeleer B (2010) Analytical characterization and comparison of the blood-brain barrier permeability of eight opioid peptides. Peptides 31(7):1390–1399. doi:10.1016/j.peptides.2010.03.029

    Article  CAS  PubMed  Google Scholar 

  57. Fleming A, Diekmann H, Goldsmith P (2013) Functional characterisation of the maturation of the blood-brain barrier in larval zebrafish. PLoS One 8(10):e77548. doi:10.1371/journal.pone.0077548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Xie J, Farage E, Sugimoto M, Anand-Apte B (2010) A novel transgenic zebrafish model for blood-brain and blood-retinal barrier development. BMC Dev Biol 10:76. doi:10.1186/1471-213X-10-76

    Article  PubMed  PubMed Central  Google Scholar 

  59. Redies C (2000) Cadherins in the central nervous system. Prog Neurobiol 61(6):611–648

    Article  CAS  PubMed  Google Scholar 

  60. Udina E, Furey M, Busch S, Silver J, Gordon T, Fouad K (2008) Electrical stimulation of intact peripheral sensory axons in rats promotes outgrowth of their central projections. Exp Neurol 210(1):238–247. doi:10.1016/j.expneurol.2007.11.007

    Article  PubMed  Google Scholar 

  61. Sun X, Liu Y, Liu B, Xiao Z, Zhang L (2012) Rolipram promotes remyelination possibly via MEK-ERK signal pathway in cuprizone-induced demyelination mouse. Exp Neurol 237(2):304–311. doi:10.1016/j.expneurol.2012.07.011

    Article  CAS  PubMed  Google Scholar 

  62. Onozuka M, Nakagaki I, Sasaki S (1989) Pentylenetetrazole-induced seizure activity produces an increased release of calcium from endoplasmic reticulum by mediating cyclic AMP-dependent protein phosphorylation in rat cerebral cortex. Gen Pharmacol 20(5):627–634

    Article  CAS  PubMed  Google Scholar 

  63. Czopka T, Ffrench-Constant C, Lyons DA (2013) Individual oligodendrocytes have only a few hours in which to generate new myelin sheaths in vivo. Dev Cell 25(6):599–609. doi:10.1016/j.devcel.2013.05.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Almeida RG, Czopka T, Ffrench-Constant C, Lyons DA (2011) Individual axons regulate the myelinating potential of single oligodendrocytes in vivo. Development 138(20):4443–4450. doi:10.1242/dev.071001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Feng Y, Yan T, Zheng J, Ge X, Mu Y, Zhang Y, Wu D, Du JL et al (2010) Overexpression of Wld(S) or Nmnat2 in mauthner cells by single-cell electroporation delays axon degeneration in live zebrafish. J Neurosci Res 88(15):3319–3327. doi:10.1002/jnr.22498

    Article  CAS  PubMed  Google Scholar 

  66. Liu Q, Londraville RL, Azodi E, Babb SG, Chiappini-Williamson C, Marrs JA, Raymond PA (2002) Up-regulation of cadherin-2 and cadherin-4 in regenerating visual structures of adult zebrafish. Exp Neurol 177(2):396–406

    Article  CAS  PubMed  Google Scholar 

  67. Thornton MR, Mantovani C, Birchall MA, Terenghi G (2005) Quantification of N-CAM and N-cadherin expression in axotomized and crushed rat sciatic nerve. J Anat 206(1):69–78. doi:10.1111/j.0021-8782.2005.00369.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mitew S, Xing YL, Merson TD (2016) Axonal activity-dependent myelination in development: insights for myelin repair. J Chem Neuroanat. doi:10.1016/j.jchemneu.2016.03.002

    PubMed  Google Scholar 

  69. Gautier HO, Evans KA, Volbracht K, James R, Sitnikov S, Lundgaard I, James F, Lao-Peregrin C et al (2015) Neuronal activity regulates remyelination via glutamate signalling to oligodendrocyte progenitors. Nat Commun 6:8518. doi:10.1038/ncomms9518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to David A. Lyons (University of Edinburgh) for plasmid (mbp-EGFP-CAAX) and Tg (mbp:mCherry-CAAX).

This research was supported by the National Natural Science Foundation of China (NSFC) 31571068,U1332136.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Hu.

Ethics declarations

All animal manipulations were conducted in strict accordance with the guidelines and regulations set forth by the University of Science and Technology of China (USTC) Animal Resources Center and University Animal Care and Use Committee. The protocol was approved by the Committee on the Ethics of Animal Experiments of the USTC (permit number: USTCACUC1103013).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Xu, Y., Huang, R. et al. N-Cadherin is Involved in Neuronal Activity-Dependent Regulation of Myelinating Capacity of Zebrafish Individual Oligodendrocytes In Vivo. Mol Neurobiol 54, 6917–6930 (2017). https://doi.org/10.1007/s12035-016-0233-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0233-4

Keywords

Navigation